Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PeerJ ; 11: e16355, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025723

RESUMEN

Humans are exposed to diverse communities of microbes every day. With more time spent indoors by humans, investigations into the communities of microbes inhabiting occupied spaces have become important to deduce the impacts of these microbes on human health and building health. Studies so far have given considerable insight into the communities of the indoor microbiota humans interact with, but mainly focus on sampling surfaces or indoor dust from filters. Beneath the surfaces though, building envelopes have the potential to contain environments that would support the growth of microbial communities. But due to design choices and distance from ground moisture, for example, the temperature and humidity across a building will vary and cause environmental gradients. These microenvironments could then influence the composition of the microbial communities within the walls. Here we present a case study designed to quantify any patterns in the compositions of fungal and bacterial communities existing in a building envelope and determine some of the key variables, such as cardinal direction, distance from floor or distance from wall joinings, that may influence any microbial community composition variation. By drilling small holes across walls of a house, we extracted microbes onto air filters and conducted amplicon sequencing. We found sampling height (distance from the floor) and cardinal direction the wall was facing caused differences in the diversity of the microbial communities, showing that patterns in the microbial composition will be dependent on sampling location within the building. By sampling beneath the surfaces, our approach provides a more complete picture of the microbial condition of a building environment, with the significant variation in community composition demonstrating a potential sampling bias if multiple sampling locations across a building are not considered. By identifying features of the built environment that promote/retard microbial growth, improvements to building designs can be made to achieve overall healthier occupied spaces.


Asunto(s)
Microbiota , Humanos , Sesgo de Selección , Microbiota/genética , Polvo/análisis , Bacterias/genética , Humedad
2.
Environ Res ; 231(Pt 1): 116063, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37156352

RESUMEN

Residential microbial composition likely contributes to the development of lower respiratory tract infections (LRTI) among children, but the association is poorly understood. We aimed to study the relationship between the indoor airborne dust bacterial and fungal microbiota and childhood LRTI in Ibadan, Nigeria. Ninety-eight children under the age of five years hospitalized with LRTI were recruited and matched by age (±3 months), sex, and geographical location to 99 community-based controls without LRTI. Participants' homes were visited and sampled over a 14-day period for airborne house dust using electrostatic dustfall collectors (EDC). In airborne dust samples, the composition of bacterial and fungal communities was characterized by a meta-barcoding approach using amplicons targeting simultaneously the bacterial 16S rRNA gene and the internal-transcribed-spacer (ITS) region-1 of fungi in association with the SILVA and UNITE database respectively. A 100-unit change in house dust bacterial, but not fungal, richness (OR 1.06; 95%CI 1.03-1.10) and a 1-unit change in Shannon diversity (OR 1.92; 95%CI 1.28-3.01) were both independently associated with childhood LRTI after adjusting for other indoor environmental risk factors. Beta-diversity analysis showed that bacterial (PERMANOVA p < 0.001, R2 = 0.036) and fungal (PERMANOVA p < 0.001, R2 = 0.028) community composition differed significantly between homes of cases and controls. Pair-wise differential abundance analysis using both DESEq2 and MaAsLin2 consistently identified the bacterial phyla Deinococcota (Benjamini-Hochberg (BH) adjusted p-value <0.001) and Bacteriodota (BH-adjusted p-value = 0.004) to be negatively associated with LRTI. Within the fungal microbiota, phylum Ascomycota abundance (BH adjusted p-value <0.001) was observed to be directly associated with LRTI, while Basidiomycota abundance (BH adjusted p-value <0.001) was negatively associated with LRTI. Our study suggests that early-life exposure to certain airborne bacterial and fungal communities is associated with LRTI among children under the age of five years.


Asunto(s)
Contaminación del Aire Interior , Microbiota , Micobioma , Infecciones del Sistema Respiratorio , Humanos , Niño , Preescolar , Lactante , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , ARN Ribosómico 16S , Microbiota/genética , Nigeria , Polvo/análisis , Bacterias/genética , Hongos/genética
3.
Gut Microbes ; 14(1): 2125733, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36193874

RESUMEN

Rural environments and microbiota are linked to a reduction in the prevalence of allergies. However, the mechanism underlying the reduced allergies modulated by rural residency is unclear. Here, we assessed gut bacterial composition and metagenomics in urban and rural children in the EuroPrevall-INCO cohort. Airborne dusts, including mattress and rural henhouse dusts, were profiled for bacterial and fungal composition by amplicon sequencing. Mice were repeatedly exposed to intranasal dust extracts and evaluated for their effects on ovalbumin (OVA)-induced allergic airway inflammation, and gut microbiota restoration was validated by fecal microbiota transplant (FMT) from dust-exposed donor mice. We found that rural children had fewer allergies and unique gut microbiota with fewer Bacteroides and more Prevotella. Indoor dusts in rural environments harbored higher endotoxin level and diversity of bacteria and fungi, whereas indoor urban dusts were enriched with Aspergillus and contained elevated pathogenic bacteria. Intranasal administration of rural dusts before OVA sensitization reduced respiratory eosinophils and blood IgE level in mice and also led to a recovery of gut bacterial diversity and Ruminiclostridium in the mouse model. FMT restored the protective effect by reducing OVA-induced lung eosinophils in recipient mice. Together, these results support a cause-effect relationship between exposure to dust microbiota and allergy susceptibility in children and mice. Specifically, rural environmental exposure modulated the gut microbiota, which was essential in reducing allergy in children from Southern China. Our findings support the notion that the modulation of gut microbiota by exposure to rural indoor dust may improve allergy prevention.


Asunto(s)
Microbioma Gastrointestinal , Hipersensibilidad , Animales , Bacterias/genética , Polvo , Endotoxinas , Hipersensibilidad/microbiología , Hipersensibilidad/prevención & control , Inmunoglobulina E , Inflamación , Ratones , Ovalbúmina
4.
Environ Res ; 196: 110835, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33582132

RESUMEN

BACKGROUND: Microbial exposures in early childhood direct the development of the immune system and their diversity may influence the risk of allergy development. We aimed to determine whether the indoor microbial diversity at early-life is associated with the development of allergic rhinitis and inhalant atopy. METHODS: The study population included children within two birth cohorts: Finnish rural-suburban LUKAS (N = 312), and German urban LISA from Munich and Leipzig study centers (N = 248). The indoor microbiota diversity (Chao1 richness and Shannon entropy) was characterized from floor dust samples collected at the child age of 2-3 months by Illumina MiSeq sequencing of bacterial and fungal DNA amplicons. Allergic rhinitis and inhalant atopy were determined at the age of 10 years and analyzed using logistic regression models. RESULTS: High bacterial richness (aOR 0.19, 95%CI 0.09-0.42 for middle and aOR 0.12, 95%CI 0.05-0.29 for highest vs. lowest tertile) and Shannon entropy were associated with lower risk of allergic rhinitis in LISA, and similar trend was seen in LUKAS. We observed some significant associations between bacterial and fungal diversity measured and the risk of inhalant atopy, but the associations were inconsistent between the two cohorts. High bacterial diversity tended to be associated with increased risk of inhalant atopy in rural areas, but lower risk in more urban areas. Fungal diversity tended to be associated with increased risk of inhalant atopy only in LISA. CONCLUSIONS: Our study suggests that a higher bacterial diversity may reduce the risk of allergic rhinitis later in childhood. The environment-dependent heterogeneity in the associations with inhalant atopy - visible here as inconsistent results between two differing cohorts - suggests that specific constituents of the diversity may be relevant.


Asunto(s)
Hipersensibilidad Inmediata , Microbiota , Rinitis Alérgica , Alérgenos , Niño , Preescolar , Polvo/análisis , Hongos , Humanos , Lactante , Rinitis Alérgica/epidemiología
5.
Environ Pollut ; 270: 116062, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33243542

RESUMEN

Commuters are exposed to a variety of physicochemical and microbiological pollutants that can lead to adverse health effects. This study aims to evaluate the indoor air quality (IAQ) in cars, buses and trains in Lisbon, to estimate inhaled doses while commuting and to evaluate the impacts of cleaning and ventilation on the IAQ. Particulate matter with diameter lower than 1, 2.5 and 10 µm (PM1, PM2.5 and PM10), black carbon (BC), carbon monoxide (CO), carbon dioxide (CO2) volatile organic compounds (VOCs), formaldehyde (CH2O) and total airborne bacteria and fungi were measured and bacterial isolates were identified. Results showed that the type of ventilation is the main factor affecting the IAQ in vehicle cabins. Under the fan off condition, the concentration of BC was lower, but the concentration of gases such as CO2, CO and VOC tended to accumulate rapidly. When the ventilation was used, the coarse particles were filtered originating the decrease of indoor concentrations. Commuters travelling in trains received the lowest dose for all chemical pollutants, except VOC, mainly because railways are further away from the direct vehicular emissions. Commuters travelling in cars without ventilation received the highest inhaled dose for almost all pollutants despite having the lowest travel duration. Airborne microbiota was highly affected by the occupancy of the vehicles and therefore, the fungi and bacterial loads were higher in trains and buses. Most of the isolated species were human associated bacteria and some of the most abundant species have been linked to respiratory tract infections.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Ambientales , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , Transportes , Emisiones de Vehículos/análisis
6.
Environ Int ; 132: 105069, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31400602

RESUMEN

An agricultural environment and exposure to diverse environmental microbiota has been suggested to confer protection against immune-mediated disorders. As an agricultural environment may have a protective role, it is crucial to determine whether the limiting factors in the transfer of environmental microbiota indoors are the same in the agricultural and urban environments. We explored how sampling month, garden diversity and animal ownership affected the indoor-transfer of environmental microbial community. We collected litter from standardized doormats used for 2 weeks in June and August 2015 and February 2016 and identified bacterial phylotypes using 16S rRNA Illumina MiSeq sequencing. In February, the diversity and richness of the whole bacterial community and the relative abundance of environment-associated taxa were reduced, whereas human-associated taxa and genera containing opportunistic pathogens were enriched in the doormats. In summer, the relative abundances of several taxa associated previously with beneficial health effects were higher, particularly in agricultural areas. Surprisingly, the importance of vegetation on doormat microbiota was more observable in February, which may have resulted from snow cover that prevented contact with microbes in soil. Animal ownership increased the prevalence of genera Bacteroides and Acinetobacter in rural doormats. These findings underline the roles of season, living environment and lifestyle in the temporal variations in the environmental microbial community carried indoors. As reduced contact with diverse microbiota is a potential reason for immune system dysfunction, the results may have important implications in the etiology of immune-mediated, non-communicable diseases.


Asunto(s)
Bacterias/aislamiento & purificación , Vivienda/estadística & datos numéricos , Microbiota , Microbiología del Suelo , Anciano , Agricultura , Animales , Bacterias/genética , Gatos , Bovinos , Ciudades , Perros , Jardines , Humanos , Plantas , ARN Ribosómico 16S/genética , Estaciones del Año , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA