Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.422
Filtrar
1.
Small ; : e2407045, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39286843

RESUMEN

This study focuses on the development of environmentally friendly Au-Cu2-xS/CuInS2 heteronanotrimers. The chosen strategy relies on the laser photodeposition of a single gold nanodot (ND) onto Janus Cu2- xS/CuInS2 heteronanocrystals (HNCs). This method offers precise control over the number, location, and size (5 to 8 nm) of the Au NDs by adjusting laser power for the career production, concentration of hole scavenger for charge equilibration in redox reactions, and gold precursor concentration, and exposure time for the final ND size. The photoreduction of gold ions onto HNCs starts systematically at the Cu2- xS tip. The Au deposition then depends on the CuInS2 segment length. For short HNCs, stable Au-Cu2- xS/CuInS2 heteronanotrimers form, while long HNCs undergo a secondary photo-induced step: the initial Au ND is progressively oxidized, with concomitant deposition of a second gold ND on the CuInS2 side, to yield Au2S-Cu2- xS/CuInS2-Au heteronanotrimers. Results are rationalized by quantitative comparison with a model that describes the growth kinetics of NDs and Au-Cu2- xS transformation and emphasizes the importance of charge separation in predicting selective deposition in heteronanotrimer production. The key parameter controlling Au-Cu2‒ xS/CuInS2 HNCs is the photoinduced electric field gradient generated by charge separation, which is tailored by controlling the CuInS2 segment size.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39292305

RESUMEN

Gallium and indium, metals present in light-emitting diode (LED) lighting technology, can be effectively recovered from aqueous solutions by sorption. For this purpose, carbonaceous materials, such as activated carbon, or low-cost biosorbents as beer bagasse, spent coffee grounds or peanut shells, and a low-cost zeolite as chabazite, were characterized by BET, FTIR, XRD, and SEM analysis prior use. Protonated chabazite, with high surface area (505 m2/g) and a Si/Al molar ratio of 3.4, showed high sorption capacities for gallium (56 mg/g) and indium (92 mg/g), which is 10 to 30 times higher than those of our carbonaceous materials (T = 298 K, pH < 3, dosage = 1 g/L). Sorption experiments with both metals in solution showed a competitive effect between gallium and indium for the sorption sites of the chabazite, showing more affinity toward gallium than indium. Ga3+sorbed/In3+sorbed molar ratio above 2 was achieved for the same initial concentration of both metals, increasing to almost 3 when the initial gallium concentration increased, which was appropriate since gallium concentration tends to be higher in LED chips. However, the sorption capacity for both metals was always around 0.35 mmol Ga + In/g. The selectivity of the chabazite was conditioned by different behavior of both metals in aqueous solution at the sorption pH (below 3.5) being the predominant species in solution Ga(OH)2+ for gallium and In3+ for indium. Sorption with protonated chabazite can be used in the treatment of spent LEDs leachate for the dual purpose of water purification and selective metal separation.

3.
Nanomaterials (Basel) ; 14(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39269070

RESUMEN

The efficiency of current GaN-based blue laser diodes (LDs) is limited by the high resistance of a thick p-AlGaN cladding layer. To reduce the operation voltage of InGaN blue LDs, we investigated optimum LD structures with an indium tin oxide (ITO) partial cladding layer using numerical simulations of LD device characteristics such as laser power, forward voltage, and wall-plug efficiency (WPE). The wall-plug efficiency of the optimized structure with the ITO layer was found to increase by more than 20% relative to the WPE of conventional LD structures. In the optimum design, the thickness of the p-AlGaN layer decreased from 700 to 150 nm, resulting in a significantly reduced operation voltage and, hence, increased WPE. In addition, we have proposed a new type of GaN-based blue LD structure with a dielectric partial cladding layer to further reduce the optical absorption of a lasing mode. The p-cladding layer of the proposed structure consisted of SiO2, ITO, and p-AlGaN layers. In the optimized structure, the total thickness of the ITO and p-AlGaN layers was less than 100 nm, leading to significantly improved slope efficiency and operation voltage. The WPE of the optimized structure was increased relatively by 25% compared to the WPE of conventional GaN-based LD structures with a p-AlGaN cladding layer. The investigated LD structures employing the ITO and SiO2 cladding layers are expected to significantly enhance the WPE of high-power GaN-based blue LDs.

4.
Angew Chem Int Ed Engl ; : e202409784, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225426

RESUMEN

Subnanometer metal clusters show advantages over conventional metal nanoparticles in numerous catalytic reactions owing to their high percentage of exposed surface sites, abundance of under-coordinated metal sites and unique electronic structures. However, the applications of subnanometer metal clusters in high-temperature catalytic reactions (>600 °C) are still hindered, because of their low stability under harsh reaction conditions. In this work, we have developed a zeolite-confined bimetallic PtIn catalyst with exceptionally high stability against sintering. A combination of experimental and theoretical studies shows that the isolated framework In(III) species serve as the anchoring sites for Pt species, precluding the migration and sintering of Pt species in the oxidative atmosphere at ≥650 °C. The catalyst comprising subnanometer PtIn clusters exhibits long-term stability of >1000 h during a cyclic reaction-regeneration test for ethane dehydrogenation reaction.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39241187

RESUMEN

The production of controlled doping in two-dimensional semiconductor materials is a challenging issue when introducing these systems into current and future technology. In some compounds, the coexistence of distinct crystallographic phases for a fixed composition introduces an additional degree of complexity for synthesis, chemical stability, and potential applications. In this work, we demonstrate that a multiphase In2Se3 layered semiconductor system, synthesized with three distinct structures─rhombohedral α and ß-In2Se3 and trigonal δ-In2Se3─exhibits chemical stability and well-behaved n-type doping. Scanning tunneling spectroscopy measurements reveal variations in the local electronic density of states among the In2Se3 structures, resulting in a compound system with electronic bandgaps that range from infrared to visible light. These characteristics make the layered In2Se3 system a promising candidate for multigap or broad spectral optical devices, such as detectors and solar cells. The ability to tune the electronic properties of In2Se3 through structural phase manipulation makes it ideal for integration into flexible electronics and the development of heterostructures with other materials.

6.
Soft Robot ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253876

RESUMEN

We propose a soft electromagnetic sliding actuator that provides various planar motions to construct highly compliant actuation systems. The actuator is composed of a fully soft actuation base (stator) for generating electromagnetic and magnetic forces and a rigid neodymium magnet (slider) that slides on the actuation base. A parallel liquid-metal coil array in the stator is designed based on theoretical modeling and an optimization process to maximize the electromagnetic field density. The stretchable magnetic components in the stator allow the slider to retain its position stably without additional constraints. By incorporating an untethered structure in which the slider is mechanically decoupled from the stator, the actuator can be operated with reduced power consumption, attributed to the absence of a restoring force. The trajectory of the slider can be programmed by selectively applying the input current to the liquid-meal coil array, and the location of the slider can be estimated by measuring the change in inductance of each coil. Moreover, the proposed actuator demonstrates the capability of operating on curved surfaces through its physical compliance as well as on inclined surfaces thanks to the holding force generated by the magnetic components of the stator. Taking advantage of the unique characteristics of our actuator, robotic applications, including shape morphing systems and sensor-actuator integrated systems, are demonstrated.

7.
J Colloid Interface Sci ; 678(Pt A): 757-766, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39217691

RESUMEN

The electrochemical reduction of CO2 (ERCO2) has emerged as one of the most promising methods for achieving both renewable energy storage and CO2 recovery. However, achieving both high selectivity and stability of catalysts remains a significant challenge. To address this challenge, this study investigated the selective synthesis of formate via ERCO2 at the interface of In2O3 and Bi2O3 in the InBiO6 composite material. Moreover, InBiO6 was synthesized using indium-based metal-organic frameworks as precursor, which underwent continuous processing through ion exchange and thermal reduction. The results revealed that the formate Faradaic efficiency (FEformate) of InBiO6 reached nearly 100 % at -0.86 V vs. reversible hydrogen electrode (RHE) and remained above 90 % after continuous 317-h electrolysis, which exceeded those of previously reported indium-based catalysts. Additionally, the InBiO6 composite material exhibited an FEformate exceeding 80 % across a wide potential range of 500 mV from -0.76 to -1.26 V vs. RHE. Density-functional theory analysis confirmed that the heterogeneous interface of InBiO6 played a role in achieving optimal free energies for *OCHO on its surface. Furthermore, the addition of Bi to the InBiO6 matrix facilitated electron transfer and altered the electronic structure of In2O3, thereby enhancing the adsorption, decomposition, and formate production of *OCHO.

8.
Small Methods ; : e2400578, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096069

RESUMEN

Transparent oxide semiconductors (TOSs) based thin-film transistors (TFTs) that exhibit higher field effect mobility (µFE) are highly required toward the realization of next-generation displays. Among numerous types of TOS-TFTs, In2O3-based TFTs are the front-running candidate because they exhibit the highest µFE ≈100 cm2 V-1 s-1. However, the device operation of In2O3 TFTs is unreliable; a large voltage shift occurs especially when negative gate bias is applied due to adsorption/desorption of gas molecules. Although passivation of the TFTs is used to overcome such instability, previously proposed passivation materials do not improve the reliability. Here, it is shown that the In2O3 TFTs passivated with Y2O3 and Er2O3 films are highly reliable and do not show threshold voltage shifts when applying gate bias. Positive and negative gate bias is applied to the In2O3 TFTs passivated with various insulating oxides and found that only the In2O3 TFTs passivated with Y2O3 and Er2O3 films do not exhibit threshold voltage shifts. It is observed that only the Y2O3 grew heteroepitaxially on the In2O3 crystal. This is the origin of the high reliability of the In2O3 TFTs passivated with Y2O3 and Er2O3 films. This finding accelerates the development of next-generation displays using high-mobility In2O3 TFTs.

9.
Nanomaterials (Basel) ; 14(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39120357

RESUMEN

This study demonstrates a significant enhancement in the performance of thin-film transistors (TFTs) in terms of stability and mobility by combining indium-tungsten oxide (IWO) and zinc oxide (ZnO). IWO/ZnO heterojunction structures were fabricated with different channel thickness ratios and annealing environments. The IWO (5 nm)/ZnO (45 nm) TFT, annealed in O2 ambient, exhibited a high mobility of 26.28 cm2/V·s and a maximum drain current of 1.54 µA at a drain voltage of 10 V, outperforming the single-channel ZnO TFT, with values of 3.8 cm2/V·s and 28.08 nA. This mobility enhancement is attributed to the formation of potential wells at the IWO/ZnO junction, resulting in charge accumulation and improved percolation conduction. The engineered heterojunction channel demonstrated superior stability under positive and negative gate bias stresses compared to the single ZnO channel. The analysis of O 1s spectra showed OI, OII, and OIII peaks, confirming the theoretical mechanism. A bias temperature stress test revealed superior charge-trapping time characteristics at temperatures of 25, 55, and 85 °C compared with the single ZnO channel. The proposed IWO/ZnO heterojunction channel overcomes the limitations of the single ZnO channel and presents an attractive approach for developing TFT-based devices having excellent stability and enhanced mobility.

10.
Small ; : e2400680, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126237

RESUMEN

Understanding the growth mechanisms of nanomaterials is crucial for effectively controlling their morphology which may affect their properties. Here, the growth process of indium nanoplates is studied using in situ liquid cell transmission electron microscopy. Quantitative analysis shows that the growth of indium nanoplate is limited by surface reaction. Besides, the growth process has two stages, which is different from that of other metal nanoplates reported previously. At the first stage, indium particles transform gradually from face-centered cubic to body-centered tetragonal (bct) structure as the seeds grow. At the second stage, the seeds grow faster than at the first stage and form indium triangular nanoplates. Indium triangular nanoplates have a bct structure with {011}-twin, which is found to form through kinetic reactions. In addition, the shape evolution of truncated triangle nanoplate with multiple twin planes is studied. The growth rate of truncated edge changes with the varied number of re-entrant grooves. The present work provides valuable insights into the growth mechanism of metal nanoplates with low-symmetric structure and the role of twin planes in the shape evolution of plate-like metal nanomaterials.

11.
Nanotechnology ; 35(44)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39111328

RESUMEN

Sn-doped indium oxide (ITO) semiconductor nano-films are fabricated by plasma-enhanced atomic layer deposition using trimethylindium (TMIn), tetrakis(dimethylamino)tin (TDMASn), and O2plasma as the sources of In, Sn and O, respectively. A shared temperature window of 150 °C- 200 °C is observed for the deposition of ITO nano-films. The introduction of Sn into indium oxide is found to increase the concentration of oxygen into the ITO films and inhibit crystallization. Furthermore, two oxidation states are observed for In and Sn, respectively. With the increment of interfaces of In-O/Sn-O in the ITO films, the relative percentage of In3+ions increases and that of Sn4+decreases, which is generated by interfacial competing reactions. By optimizing the channel component, the In0.77Sn0.23O1.11thin-film transistors (TFTs) demonstrate high performance, includingµFEof 52.7 cm2V-1s-1, and a highION/IOFFof ∼5 × 109. Moreover, the devices show excellent positive bias temperature stress stability at 3 MV cm-1and 85 °C, i.e. a minimalVthshift of 0.017 V after 4 ks stress. This work highlights the successful application of ITO semiconductor nano-films by ALD for TFTs.

12.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39125851

RESUMEN

Extensive ab initio density functional theory molecular dynamics calculations were used to evaluate stability conditions for relevant phases of InN. In particular, the p-T conditions of the thermal decomposition of InN and pressure-induced wurtzite-rocksalt solid-solid phase transition were established. The comparison of the simulation results with the available experimental data allowed for a critical evaluation of the capabilities and limitations of the proposed simulation method. It is shown that ab initio molecular dynamics can be used as an efficient tool for simulations of phase transformations of InN, including solid-solid structural transition and thermal decomposition with formation of N2 molecules. It is of high interest, because InN is an important component of epitaxial quantum structures, but it has not been obtained as a bulk single crystal. This makes it difficult to determine its basic physical properties to develop new applications.


Asunto(s)
Simulación de Dinámica Molecular , Transición de Fase , Temperatura , Teoría Cuántica
13.
ACS Nano ; 18(36): 25107-25117, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39190644

RESUMEN

Eutectic gallium-indium (EGaIn), a room-temperature liquid metal, has garnered significant attention for its applications in soft electronics, multifunctional materials, energy engineering and drug delivery. A key factor influencing these diverse applications is the spontaneous formation of a native passivating oxide shell that not only encapsulates the liquid metal but also alters the properties from the bulk counterpart. Using environmental scanning transmission electron microscopy, we report in situ observations of the oxidation of EGaIn nanoparticles by ambient air under high-energy electron beam irradiation. Our findings demonstrate that uneven oxide shell growth, driven by inward diffusion of adsorbed O species, creates unbalanced stresses. This compels the liquid metal to deform toward regions with slower oxide growth, resulting in shell rupture and allowing the liquid metal core to flow out. This process initiates top-down self-similar replication of the core-shell liquid metal nanoparticles, causing larger particles to break down into smaller particles. Additionally, internal oxidation triggers phase separation within the liquid core, ultimately leading to the pulverization of the liquid metal into finer solid particles rich in indium. These mechanistic insights into the oxidation behavior of the liquid metal hold practical implications for leveraging this process to reconfigure EGaIn nanoparticles for various applications.

14.
J Hazard Mater ; 478: 135523, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39178780

RESUMEN

Siderophores are promising ligands for application in novel recycling and bioremediation technologies, as they can selectively complex a variety of metals. However, with over 250 known siderophores, the selection of suiting complexants in the wet lab is impractical. Thus, this study established a density functional theory (DFT) based approach to efficiently identify siderophores with increased selectivity towards target metals on the example of germanium and indium. Considering 239 structures, chemically similar siderophores were clustered, and their complexation reactions modeled utilizing DFT. The calculations revealed siderophores with, compared to the reference siderophore desferrioxamine B (DFOB), up to 128 % or 48 % higher selectivity for indium or germanium, respectively. Experimental validation of the method was conducted with fimsbactin A and agrobactin, demonstrating up to 40 % more selective indium binding and at least sevenfold better germanium binding than DFOB, respectively. The results generated in this study open the door for the utilization of siderophores in eco-friendly technologies for the recovery of many different critical metals from various industry waters and leachates or bioremediation approaches. This endeavor is greatly facilitated by applying the herein-created database of geometry-optimized siderophore structures as de novo modeling of the molecules can be omitted.

15.
Ultrason Sonochem ; 110: 107046, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39208592

RESUMEN

In this study, ultrasound-enhanced calcium carbonate precipitation was used to enrich indium in zinc oxide dust leachate, and the effects of precipitation endpoint pH and ultrasound power on the indium precipitation behaviour were investigated, and the optimal conditions of ultrasound-enhanced precipitation were obtained to be the precipitation endpoint pH of 4.0 and the ultrasound power of 200 W. The precipitation rate of indium under these conditions was 99.79 %. At the same time, the effects of ultrasonication and conventional stirring on the indium precipitation kinetics were compared, which proved that ultrasound can shorten the time for precipitation to reach equilibrium and reduce the amount of calcium carbonate used, and the theory of ultrasonication activation energy was put forward. The activation energy of ultrasonication was Eu-a = 2.63 KJ/mol, and that of conventional precipitation was 9.78KJ/mol, which proved that ultrasonication could reduce the activation energy of the precipitation reaction, and promote the rapid precipitation reaction. The kinetic model of ultrasound-enhanced indium precipitation is lnC0-lnCt = exp(0.11339-318.54/W).t + A. In addition, the mechanism of ultrasound-enhanced calcium carbonate precipitation of indium was revealed by XRD, SEM-EDS, XPS and TEM analyses of the precipitated residue, it was demonstrated that ultrasound can inhibit the precipitation of zinc, and the ZnCO3 phase was found in the ultrasonically precipitated residue. This study provides a new idea for indium enrichment, and the future focus will be on the scale-up of the ultrasound-enhanced precipitation device.

16.
Artículo en Inglés | MEDLINE | ID: mdl-39147601

RESUMEN

Radionuclide therapy employing alpha emitters holds great potential for personalized cancer treatment. However, certain challenges remain when designing alpha radiopharmaceuticals, including the lack of stability of used radioconjugates due to nuclear decay events. In this work, ultrasmall silver telluride nanoparticles with a core diameter of 2.1 nm were prepared and radiolabeled with lead-212 using a chelator-free method with a radiolabeling efficiency of 75%. The results from the in vitro radiochemical stability assay indicated a very high retention of bismuth-212 despite the internal conversion effects originating from the decay of 212Pb. To further evaluate the potential of the nanoparticles, they were radiolabeled with indium-111, and their cell uptake and subcellular distribution were determined in 2D U87 cells, showing accumulation in the nucleus. Although not intentional, it was observed that the indium-111-radiolabeled nanoparticles induced efficient tumor cell killing, which was attributed to the Auger electrons emitted by indium-111. Combining the results obtained in this work with other favorable properties such as fast renal clearance and the possibility to attach targeting vectors on the surface of the nanoparticles, all well-known from the literature, these ultra-small silver telluride nanoparticles provide exciting opportunities for the design of theragnostic radiopharmaceuticals.

17.
Molecules ; 29(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39202795

RESUMEN

Significant interest has emerged for the application of Pd-In2O3 catalysts as high-performance catalysts for CO2 hydrogenation to CH3OH. However, precise active site control in these catalysts and understanding their reaction mechanisms remain major challenges. In this investigation, a series of Pd-InOx catalysts were synthesized, revealing three distinct types of active sites: In-O, Pd-O(H)-In, and Pd2In3. Lower Pd loadings exhibited Pd-O(H)-In sites, while higher loadings resulted in Pd2In3 intermetallic compounds. These variations impacted catalytic performance, with Pd-O(H)-In catalysts showing heightened activity at lower temperatures due to the enhanced CO2 adsorption and H2 activation, and Pd2In3 catalysts performing better at elevated temperatures due to the further enhanced H2 activation. In situ DRIFTS studies revealed an alteration in key intermediates from *HCOO over In-O bonds to *COOH over Pd-O(H)-In and Pd2In3 sites, leading to a shift in the main reaction pathway transition and product distribution. Our findings underscore the importance of active site engineering for optimizing catalytic performance and offer valuable insights for the rational design of efficient CO2 conversion catalysts.

18.
Molecules ; 29(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39202936

RESUMEN

Heterostructures of visible light-absorbing semiconductors were prepared through the growth of ZnIn2S4 crystallites in the presence of CdS nanostructures. A variety of hybrid compositions was synthesized. Both reference samples and heterostructured materials were characterized in detail, regarding their morphology, crystalline character, chemical speciation, as well as vibrational properties. The abovementioned physicochemical characterization suggested the absence of doping phenomena, such as the integration of either zinc or indium ions into the CdS lattice. At specific compositions, the growth of the amorphous ZnIn2S4 component was observed through both XRD and Raman analysis. The development of heterojunctions was found to be composition-dependent, as indicated by the simultaneous recording of the Raman profiles of both semiconductors. The optical band gaps of the hybrids range at values between the corresponding band gaps of reference semiconductors. The photocatalytic activity was assessed in both organic dye degradation and hydrogen peroxide evolution. It was observed that the hybrids demonstrating efficient photocatalytic activity in dye degradation were rather poor photocatalysts for hydrogen peroxide evolution. Specifically, the hybrids enriched in the CdS component were shown to act efficiently for hydrogen peroxide evolution, whereas ZnIn2S4-enriched hybrids demonstrated high potential to photodegrade an azo-type organic dye. Furthermore, scavenging experiments suggested the involvement of singlet oxygen in the mechanistic path for dye degradation.

19.
ACS Appl Mater Interfaces ; 16(32): 42476-42480, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39087595

RESUMEN

We present a new approach to achieve nanoscale transistors on ultrathin flexible substrates with conventional electron-beam lithography. Full devices are first fabricated on a gold sacrificial layer covering a rigid silicon substrate, and then coated with a polyimide film and released from the rigid substrate. This approach bypasses nanofabrication constraints on flexible substrates: (i) electron-beam surface charging, (ii) alignment inaccuracy due to the wavy substrate, and (iii) restricted thermal budgets. As a proof-of-concept, we demonstrate ∼100 nm long indium tin oxide (ITO) transistors on ∼6 µm thin polyimide. This is achieved with sub-20 nm misalignment or overlap between source (or drain) and gate contacts on flexible substrates for the first time. The estimated transit frequency of our well-aligned devices can be up to 3.3 GHz, which can be further improved by optimizing the device structure and performance.

20.
ACS Appl Mater Interfaces ; 16(36): 48629-48638, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39194349

RESUMEN

Polycrystalline Cu(InGaAl)Se2 (CIGAS) thin films were prepared on polyimide (PI) foils by depositing aluminum (Al) and CIGS precursor layers. Three ceramic CIGS quaternary targets with different sodium (Na) contents were used for investigating the influences of alkali doping at an annealing temperature of 500 °C. The Al concentration was enriched at the front interfaces of absorber films with different Na doping amounts after annealing. Na in the precursor layer diffused to both interfaces during the annealing process, most Na diffused into the Mo layer, and Na existed in the annealed film as compounds Na2Sex and Na2SeO3. An appropriate amount Na element could be beneficial for grain growth in the region beneath the surface. Low Na doping had no significant effect on the crystallization property. High Na doping effected the diffusion of the Cu2-xSe liquid phase and reduced the grain size. On the basis of good crystallization, the passivation effect of Na can effectively improve the performance of cells. A certified power conversion efficiency of 16.19% of a CIGAS flexible solar cell with a 0.54 cm2 active area has been achieved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA