Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Microbiol ; 24(1): 178, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783210

RESUMEN

BACKGROUND: The emergence of multidrug-resistant (MDR) Escherichia coli strains poses significant challenges in clinical settings, particularly when these strains harbor New Delhi metallo-ß-lactamase (NDM) gene, which confer resistance to carbapenems, a critical class of last-resort antibiotics. This study investigates the genetic characteristics and implications of a novel blaNDM-5-carrying plasmid pNDM-5-0083 isolated from an E. coli strain GZ04-0083 from clinical specimen in Zhongshan, China. RESULTS: Phenotypic and genotypic evaluations confirmed that the E. coli ST167 strain GZ04-0083 is a multidrug-resistant organism, showing resistance to diverse classes of antibiotics including ß-lactams, carbapenems, fluoroquinolones, aminoglycosides, and sulfonamides, while maintaining susceptibility to monobactams. Investigations involving S1 pulsed-field gel electrophoresis, Southern blot analysis, and conjugation experiments, alongside genomic sequencing, confirmed the presence of the blaNDM-5 gene within a 146-kb IncFIB plasmid pNDM-5-0083. This evidence underscores a significant risk for the horizontal transfer of resistance genes among bacterial populations. Detailed annotations of genetic elements-such as resistance genes, transposons, and insertion sequences-and comparative BLAST analyses with other blaNDM-5-carrying plasmids, revealed a unique architectural configuration in the pNDM-5-0083. The MDR region of this plasmid shares a conserved gene arrangement (repA-IS15DIV-blaNDM-5-bleMBL-IS91-suI2-aadA2-dfrA12) with three previously reported plasmids, indicating a potential for dynamic genetic recombination and evolution within the MDR region. Additionally, the integration of virulence factors, including the iro and sit gene clusters and enolase, into its genetic architecture poses further therapeutic challenges by enhancing the strain's pathogenicity through improved host tissue colonization, immune evasion, and increased infection severity. CONCLUSIONS: The detailed identification and characterization of pNDM-5-0083 enhance our understanding of the mechanisms facilitating the spread of carbapenem resistance. This study illuminates the intricate interplay among various genetic elements within the novel blaNDM-5-carrying plasmid, which are crucial for the stability and mobility of resistance genes across bacterial populations. These insights highlight the urgent need for ongoing surveillance and the development of effective strategies to curb the proliferation of antibiotic resistance.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli , Escherichia coli , Pruebas de Sensibilidad Microbiana , Plásmidos , beta-Lactamasas , Plásmidos/genética , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Antibacterianos/farmacología , beta-Lactamasas/genética , Humanos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/transmisión , China , Transferencia de Gen Horizontal , Carbapenémicos/farmacología
2.
Data Brief ; 50: 109506, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37674506

RESUMEN

Raoultella ornithinolytica PX02 is a Gram-negative, encapsulated bacterium, part of the Enterobacteriaceae family, emerging as a notable human pathogen. Here, we present the whole genome sequence of R. ornithinolytica PX02 isolated from San Jacinto River sediment near a Burnet Shores community in Baytown, Texas. This microorganism harbors a large 200,000 bp incF plasmid and can potentially be a significant antibiotic reservoir. The PX02 genome consists of 5,970,914 base pairs encoding approximately 5,661 functional proteins. Strain PX02 (chromosomal and plasmid) was compiled at the scaffold level and can be accessed through the National Center for Biotechnology Information database under accession NZ_NJBC00000000.1.

3.
Microb Genom ; 8(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35019836

RESUMEN

The rapid emergence of multidrug-resistant Klebsiella pneumoniae is being driven largely by the spread of specific clonal groups (CGs). Of these, CG147 includes 7-gene multilocus sequence typing (MLST) sequence types (STs) ST147, ST273 and ST392. CG147 has caused nosocomial outbreaks across the world, but its global population dynamics remain unknown. Here, we report a pandrug-resistant ST147 clinical isolate from India (strain DJ) and define the evolution and global emergence of CG147. Antimicrobial-susceptibility testing following European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines and genome sequencing (Illumina and Oxford Nanopore Technologies, Unicycler assembly) were performed on strain DJ. Additionally, we collated 217 publicly available CG147 genomes [National Center for Biotechnology Information (NCBI), May 2019]. CG147 evolution was inferred within a temporal phylogenetic framework (beast) based on a recombination-free sequence alignment (Roary/Gubbins). Comparative genomic analyses focused on resistance and virulence genes and other genetic elements (BIGSdb, Kleborate, PlasmidFinder, phaster, ICEfinder and CRISPRCasFinder). Strain DJ had a pandrug-resistance phenotype. Its genome comprised the chromosome, seven plasmids and one linear phage-plasmid. Four carbapenemase genes were detected: blaNDM-5 and two copies of blaOXA-181 in the chromosome, and a second copy of blaNDM-5 on an 84 kb IncFII plasmid. CG147 genomes carried a mean of 13 acquired resistance genes or mutations; 63 % carried a carbapenemase gene and 83 % harboured blaCTX-M. All CG147 genomes presented GyrA and ParC mutations and a common subtype I-E CRISPR-Cas system. ST392 and ST273 emerged in 2005 and 1995, respectively. ST147, the most represented phylogenetic branch, was itself divided into two main clades with distinct capsular loci: KL64 (74 %, DJ included, emerged in 1994 and disseminated worldwide, with carbapenemases varying among world regions) and KL10 (20 %, emerged in 2002, predominantly found in Asian countries, associated with carbapenemases NDM and OXA-48-like). Furthermore, subclades within ST147-KL64 differed at the yersiniabactin locus, OmpK35/K36 mutations, plasmid replicons and prophages. The absence of IncF plasmids in some subclades was associated with a possible activity of a CRISPR-Cas system. K. pneumoniae CG147 comprises pandrug-resistant or extensively resistant isolates, and carries multiple and diverse resistance genes and mobile genetic elements, including chromosomal blaNDM-5. Its emergence is being driven by the spread of several phylogenetic clades marked by their own genomic features and specific temporo-spatial dynamics. These findings highlight the need for precision surveillance strategies to limit the spread of particularly concerning CG147 subsets.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Genómica/métodos , Klebsiella pneumoniae/clasificación , Secuenciación Completa del Genoma/métodos , Evolución Molecular , Genoma Bacteriano , India , Secuencias Repetitivas Esparcidas , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , Familia de Multigenes , Filogenia , Plásmidos/genética , Profagos/genética , Factores de Virulencia/genética
4.
Front Vet Sci ; 8: 737720, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568479

RESUMEN

Avian pathogenic Escherichia coli (APEC) causes colibacillosis, the disease with the highest economic loss for the broiler industry. However, studies focusing on the prevalence and population structure of APEC in the broiler production pyramid are scarce. Here, we used genotyping and serotyping data to elucidate the APEC population structure and its changes in different broiler production stages along with whole-genome sequencing (WGS) in a subset of APEC isolates to determine transmission patterns amongst dominant APEC sequence types (STs) and characterize them in detail. Comparison of genotypes encountered in both APEC and avian fecal E. coli (AFEC) provided further insights. Overall, APEC-related mortality, as the proportion of the total sampled mortality in the broiler production, was high (35%), while phylogroup C and serogroup O78 were predominant amongst APEC isolates. We found a low (34.0%) and high (53.3%) incidence of colibacillosis in chicks and end-cycle broilers, respectively, which may be related to a shift in APEC genotypes, suggesting a trend from commensalism to pathogenicity across different broiler production stages. Despite considerable APEC genotypic diversity, there was substantial genotype overlap (40.9%, overall) over the production stages and convergence of STs to the four clusters. Within these clusters, WGS data provided evidence of clonal transmission events and revealed an enriched virulence and resistance APEC repertoire. More specifically, sequenced APEC were assigned to defined pathotypes based on their virulence gene content while the majority (86%) was genotypically multi-drug resistant. Interestingly, WGS-based phylogeny showed that a subset of APEC, which are cephalosporin-resistant, may originate directly from cephalosporin-resistant AFEC. Finally, exploration of the APEC plasmidome indicated that the small fraction of the APEC virulome carried by IncF plasmids is pivotal for the manifestation of the APEC pathotype; thus, plasmid exchange can promote pathogenicity in strains that are at the edge of the commensal and pathogenic states.

5.
Genome Med ; 13(1): 119, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294113

RESUMEN

BACKGROUND: Klebsiella pneumoniae, as a global priority pathogen, is well known for its capability of acquiring mobile genetic elements that carry resistance and/or virulence genes. Its virulence plasmid, previously deemed nonconjugative and restricted within hypervirulent K. pneumoniae (hvKP), has disseminated into classic K. pneumoniae (cKP), particularly carbapenem-resistant K. pneumoniae (CRKP), which poses alarming challenges to public health. However, the mechanism underlying its transfer from hvKP to CRKP is unclear. METHODS: A total of 28 sequence type (ST) 11 bloodstream infection-causing CRKP strains were collected from Ruijin Hospital in Shanghai, China, and used as recipients in conjugation assays. Transconjugants obtained from conjugation assays were confirmed by XbaI and S1 nuclease pulsed-field gel electrophoresis, PCR detection and/or whole-genome sequencing. The plasmid stability of the transconjugants was evaluated by serial culture. Genetically modified strains and constructed mimic virulence plasmids were employed to investigate the mechanisms underlying mobilization. The level of extracellular polysaccharides was measured by mucoviscosity assays and uronic acid quantification. An in silico analysis of 2608 plasmids derived from 814 completely sequenced K. pneumoniae strains available in GenBank was performed to investigate the distribution of putative helper plasmids and mobilizable virulence plasmids. RESULTS: A nonconjugative virulence plasmid was mobilized by the conjugative plasmid belonging to incompatibility group F (IncF) from the hvKP strain into ST11 CRKP strains under low extracellular polysaccharide-producing conditions or by employing intermediate E. coli strains. The virulence plasmid was mobilized via four modes: transfer alone, cotransfer with the conjugative IncF plasmid, hybrid plasmid formation due to two rounds of single-strand exchanges at specific 28-bp fusion sites or homologous recombination. According to the in silico analysis, 31.8% (242) of the putative helper plasmids and 98.8% (84/85) of the virulence plasmids carry the 28-bp fusion site. All virulence plasmids carry the origin of the transfer site. CONCLUSIONS: The nonconjugative virulence plasmid in ST11 CRKP strains is putatively mobilized from hvKP or E. coli intermediates with the help of conjugative IncF plasmids. Our findings emphasize the importance of raising public awareness of the rapid dissemination of virulence plasmids and the consistent emergence of hypervirulent carbapenem-resistant K. pneumoniae (hv-CRKP) strains.


Asunto(s)
Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Plásmidos/genética , Carbapenémicos/farmacología , Biología Computacional/métodos , Conjugación Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/patogenicidad , Anotación de Secuencia Molecular , Polisacáridos Bacterianos/biosíntesis , Análisis de Secuencia de ADN , Virulencia/genética , Secuenciación Completa del Genoma , Resistencia betalactámica
6.
J Glob Antimicrob Resist ; 26: 317-322, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34216807

RESUMEN

OBJECTIVES: In extreme environments, such as the Arctic region, the anthropogenic influence is low and the presence of antimicrobial-resistant bacteria is unexpected. In this study, we screened wild reindeer (Rangifer tarandus platyrhynchus) from the Svalbard High Arctic Archipelago for antimicrobial-resistant Escherichia coli and performed in-depth strain characterisation. METHODS: Using selective culturing of faecal samples from 55 animals, resistant E. coli were isolated and subjected to minimum inhibitory concentration (MIC) determination, conjugation experiments and whole-genome sequencing. RESULTS: Twelve animals carried antimicrobial-resistant E. coli. Genomic analysis showed IncF plasmids as vectors both for resistance and virulence genes in most strains. Plasmid-associated genes encoding resistance to ampicillin, sulfonamides, streptomycin and trimethoprim were found in addition to virulence genes typical for colicin V (ColV)-producing plasmids. Comparison with previously reported IncF ColV plasmids from human and animal hosts showed high genetic similarity. The plasmids were detected in E. coli sequence types (STs) previously described as hosts for such plasmids, such as ST58, ST88 and ST131. CONCLUSION: Antimicrobial-resistant E. coli were detected from Svalbard reindeer. Our findings show that successful hybrid antimicrobial resistance-ColV plasmids and their host strains are widely distributed also occurring in extreme environmental niches such as arctic ecosystems. Possible introduction routes of resistant bacterial strains and plasmids into Svalbard ecosystems may be through migrating birds, marine fish or mammals, arctic fox (Vulpes lagopus) or via human anthropogenic activities such as tourism.


Asunto(s)
Escherichia coli , Reno , Animales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Ecosistema , Escherichia coli/genética , Plásmidos/genética , Virulencia/genética
7.
Microb Drug Resist ; 27(12): 1633-1640, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34077257

RESUMEN

The development of carbapenem resistance in extraintestinal pathogenic Escherichia coli (ExPEC) has significant clinical implications, particularly in countries where second-line antimicrobials are not readily available, rendering treatments ineffective, and ExPEC infections untreatable. Thus, early detection of high-risk ExPEC lineages and raising awareness of the specific mechanisms underlying carbapenem resistance are mandatory for the selection of appropriate treatment options and the prevention of E. coli spread. This study aims to investigate the phenotypic and genotypic features of the first NDM-5 carbapenemase-producing ExPEC strain isolated from the blood of a patient admitted to the Maputo Central Hospital (MCH), in Mozambique. E. coli SSM100 isolate was identified by MALDI-TOF, it displayed high-level resistance to third generation cephalosporins, carbapenems, fluoroquinolones, and aminoglycosides, performing antimicrobial susceptibilities testing by VITEK 2 system. E. coli SSM100 isolate was classified through whole-genome sequencing as ST405-D-O102: H6, a globally distributed lineage associated with antimicrobial resistance, carrying the blaNDM-5 gene located on an F1:A1:B49 plasmid, coharboring blaCTX-M-15, blaTEM-1, aadA2, sul1, and dfrA12 genes. In addition, mutations in gyrA (S83L and D87N), parC (S80I and E84V), and parE (I529L) conferring fluoroquinolone resistance were also found. Moreover, SSM100 isolate carried 88 virulence genes, of which 28 are reported to be associated with UPEC. The emergence of NDM-5 carbapenemase in a pandemic ST405-D-O102:H6 clone in Mozambique is of great concern. Locations of extended-spectrum ß-lactamase determinants and NDM-5 carbapenemase gene on IncF-plasmid can increase their spread reinforcing the need for antimicrobial surveillance and the urgent introduction of carbapenemase detection tests in diagnostic laboratories of the country.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli Patógena Extraintestinal/efectos de los fármacos , Escherichia coli Patógena Extraintestinal/crecimiento & desarrollo , Escherichia coli Patógena Extraintestinal/genética , Escherichia coli Patógena Extraintestinal/aislamiento & purificación , Genes Bacterianos , Genotipo , Pruebas de Sensibilidad Microbiana , Mozambique , Fenotipo , Plásmidos , Virulencia , Secuenciación Completa del Genoma , beta-Lactamasas/genética
8.
Antimicrob Agents Chemother ; 65(7): e0082521, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33972240

RESUMEN

Infections caused by extended-spectrum-ß-lactamase (ESBL)-producing Escherichia coli are a significant cause of morbidity and health care costs. Globally, the prevailing clonal type is ST131 in association with the blaCTX-M-15 ß-lactamase gene. However, other ESBLs, such as blaCTX-M-14 and blaCTX-M-27, can also be prevalent in some regions. We identified ST38 ESBL-producing E. coli from different regions in the United States which carry blaCTX-M-27 embedded on two distinct plasmid types, suggesting the potential emergence of new ESBL lineages.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli/genética , Infecciones por Escherichia coli/tratamiento farmacológico , Proteínas de Escherichia coli/genética , Humanos , Plásmidos/genética , Estados Unidos , beta-Lactamasas/genética
9.
Front Microbiol ; 11: 483, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265894

RESUMEN

Plasmids are genetic elements that enable rapid adaptation and evolution by transferring genes conferring selective advantages to their hosts. Conjugative plasmids are predominantly responsible for the global dissemination of antimicrobial resistance, representing an important threat to global health. As the number of plasmid sequences grows exponentially, it becomes critical to depict the global diversity and decipher the distribution of circulating plasmids in the bacterial community. To this end, we created COMPASS, a novel and comprehensive database compiling 12,084 complete plasmids with associated metadata from 1571 distinct species isolated worldwide over more than 100 years. The curation of the database allowed us to identify identical plasmids across different bacteria revealing mainly intraspecies dissemination and rare cases of horizontal transmission. We outlined and analyzed all relevant features, plasmid properties, host range and characterized their replication and mobilization systems. After an exhaustive comparison of PlasmidFinder and MOB-typer, the MOB-typer-based analysis revealed that the current knowledge embedded in the current typing schemes fails to classify all the plasmid sequences collected in COMPASS. We were able to categorize 6828 and 5229 plasmids by replicon and MOB typing, respectively, mostly associated with Proteobacteria and Firmicutes. We then searched for the presence of multiple core genes involved in replication and propagation. Our results showed that 2403 plasmids carried multiple replicons that were distributed in 206 bacterial species. The co-integration of replicon types from different incompatibility (Inc) groups is an adaptive mechanism, which plays an important role in plasmid survival and dissemination by extending their host range. Our results highlight the crucial role of IncF alleles (present in 56% of all multireplicons) and revealed that IncH, IncR, and IncU replicons were also frequently carried in multireplicons. Here, we provided a comprehensive picture of the different IncF subtypes by identifying 20 different profiles in 849 IncF multireplicons, which were mostly associated with Enterobacteriaceae. These results could provide the basis for a novel IncF plasmid nomenclature based on different allelic profiles.

10.
Ecotoxicol Environ Saf ; 183: 109514, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31394374

RESUMEN

This study was conducted to determine the prevalence of integrons and associated gene cassettes in Escherichia coli (E. coli) isolates from waterfowls in Hainan, China. The antimicrobial resistance profile of the isolates was examined by using disc diffusion test. In addition, PCR, RFLP, plasmid replicon typing and DNA sequencing analyses were used for the characterization of integrase genes (class 1, 2 and 3) and associated gene cassettes. Approximatively, 90% of the isolates were positive for the integrase genes by PCR. Specifically, class 1 and class 2 integrons were found in 252 (81%) and 7 (2.3%) strains, respectively. While 21 (6.7%) isolates were positive for both class 1 and class 2 integrons. However, none of the isolate was positive for the class 3 integrons. In addition, 5 various cassette arrays, dfrA1-orfC, aadA2, aadA1, dfrA1-aadA1, and dfrA1-orfC- aadA1, were found within the variable regions (VRs) of class 1 integron isolates. While only single cassette array, dfrA1-sat2- aadA1, was identified within VRs of class 2 integron isolates. We identified incF plasmid as the most common plasmid type, which was detected in 81 of 243 VRs containing isolates. This study is the first report showing the baseline characteristics of integrons in E. coli isolates from waterfowls in Hainan, China. Our results provide evidence of the waterfowl birds as a reservoir of class 1 and class 2 integrons carrying antibiotic resistance gene cassettes. Therefore, strict preventive measures should be taken to avoid the spread of mobile genetic resistance elements in waterfowls in China.


Asunto(s)
Anseriformes/microbiología , ADN Bacteriano/genética , Farmacorresistencia Bacteriana , Escherichia coli/aislamiento & purificación , Integrones , Aves de Corral/microbiología , Animales , Antibacterianos/farmacología , China , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Humanos , Integrones/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-31332067

RESUMEN

Despite a fitness cost imposed on bacterial hosts, large conjugative plasmids play a key role in the diffusion of resistance determinants, such as CTX-M extended-spectrum ß-lactamases. Among the large conjugative plasmids, IncF plasmids are the most predominant group, and an F2:A1:B- IncF-type plasmid encoding a CTX-M-15 variant was recently described as being strongly associated with the emerging worldwide Escherichia coli sequence type 131 (ST131)-O25b:H4 H30Rx/C2 sublineage. In this context, we investigated the fitness cost of narrow-range F-type plasmids, including the F2:A1:B- IncF-type CTX-M-15 plasmid, and of broad-range C-type plasmids in the K-12-like J53-2 E. coli strain. Although all plasmids imposed a significant fitness cost to the bacterial host immediately after conjugation, we show, using an experimental-evolution approach, that a negative impact on the fitness of the host strain was maintained throughout 1,120 generations with the IncC-IncR plasmid, regardless of the presence or absence of cefotaxime, in contrast to the F2:A1:B- IncF plasmid, whose cost was alleviated. Many chromosomal and plasmid rearrangements were detected after conjugation in transconjugants carrying the IncC plasmids but not in transconjugants carrying the F2:A1:B- IncF plasmid, except for insertion sequence (IS) mobilization from the fliM gene leading to the restoration of motility of the recipient strains. Only a few mutations occurred on the chromosome of each transconjugant throughout the experimental-evolution assay. Our findings indicate that the F2:A1:B- IncF CTX-M-15 plasmid is well adapted to the E. coli strain studied, contrary to the IncC-IncR CTX-M-15 plasmid, and that such plasmid-host adaptation could participate in the evolutionary success of the CTX-M-15-producing pandemic E. coli ST131-O25b:H4 lineage.


Asunto(s)
Escherichia coli/enzimología , Escherichia coli/genética , Plásmidos/genética , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Cefotaxima/farmacología , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Mutación/genética , beta-Lactamasas/genética
12.
Indian J Med Res ; 149(2): 247-256, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-31219090

RESUMEN

Background & objectives: Bacillary dysentery caused by Shigella spp. remains an important cause of the crisis in low-income countries. It has been observed that Shigella species have become increasingly resistant to most widely used antimicrobials. In this study, the antimicrobial resistance, virulence and plasmid profile of clinical isolates of Shigella species were determined. Methods: Sixty clinical Shigella isolates were subjected to whole-genome sequencing using Ion Torrent platform and the genome sequences were analyzed for the presence of acquired resistance genes, virulence genes and plasmids using web-based software tools. Results: Genome analysis revealed more resistance genes in Shigella flexneri than in other serogroups. Among ß-lactamases, blaOXA-1was predominantly seen followed by the blaTEM-1B and blaEC genes. For quinolone resistance, the qnr S gene was widely seen. Novel mutations in gyr B, par C and par E genes were observed. Cephalosporins resistance gene, blaCTX-M-15 was identified and plasmid-mediated AmpC ß-lactamases genes were found among the isolates. Further, a co-trimoxazole resistance gene was identified in most of the isolates studied. Virulence genes such as ipaD, ipaH, virF, senB, iha, capU, lpfA, sigA, pic, sepA, celb and gad were identified. Plasmid analysis revealed that the IncFII was the most commonly seen plasmid type in the isolates. Interpretation & conclusions: The presence of quinolone and cephalosporin resistance genes in Shigella serogroups has serious implications for the further spread of this resistance to other enteric pathogens or commensal organisms. This suggests the need for continuous surveillance to understand the epidemiology of the resistance.


Asunto(s)
Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Disentería Bacilar/genética , Shigella/genética , beta-Lactamasas/genética , Antibacterianos/efectos adversos , Antibacterianos/uso terapéutico , Cefalosporinas/efectos adversos , Cefalosporinas/uso terapéutico , Disentería Bacilar/tratamiento farmacológico , Disentería Bacilar/epidemiología , Disentería Bacilar/microbiología , Heces/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Plásmidos/efectos de los fármacos , Plásmidos/genética , Serogrupo , Shigella/patogenicidad , Secuenciación Completa del Genoma
13.
Future Sci OA ; 3(4): FSO229, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29134117

RESUMEN

AIM: Sequencing technology has replaced conventional methods in identifying and characterizing bacterial pathogens. We characterized 23 nonserotypeable Shigella that biochemically resembled Shigella spp. using whole genome sequencing. MATERIALS & METHODS: Genome sequences were analyzed using online tools based on 16S rRNA, k-mer, gyrB sequences and analysis of O-antigen arrangement was done using PATRIC database for species identification. Sequence types, plasmid types, antimicrobial resistance and virulence genes were also investigated. RESULTS: The SpeciesFinder using 16S rRNA sequences identified only 74% of the isolates, whereas KmerFinder and gyrB sequence analysis identified 100% of the isolates to its species level. Antimicrobial resistance, virulence and plasmid incompatibility groups were identified in all the isolates. Sequence types were determined. CONCLUSION: This study shows that whole genome sequencing approach for Shigella O-antigen analysis has greater discriminative power than other methods using different bioinformatics pipeline for identification of nonserotypeable Shigella.

14.
Front Microbiol ; 6: 964, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26441898

RESUMEN

The purpose of this study was to characterize a collection of 103 multidrug resistance IncF plasmids recovered from Escherichia coli of food producing and companion animals between 2003 and 2012. A total of 103 incF plasmids were characterized using an established PCR-based IncF replicon sequence typing (RST) system to identify FII, FIA, and FIB (FAB) groups. Plasmids were also analyzed using-restriction fragment length polymorphism (RFLP). Antibiotic Resistance determinants bla CTX-M , plasmid-mediated quinolone resistance (PMQR) genes and rmtB and plasmid addiction systems (PAS) were identified by PCR screening. A total of 20 different RSTs from 103 IncF plasmids were identified. The groups F2 and F33 with the RST formulae A-: B- were the most frequently encountered types (63.1%). The antibiotic resistance genes (ARGs) bla CTX-M , rmtB, and oqxB were carried by 82, 37, and 34 IncF plasmids, respectively. Most of these plasmids carried more than one resistance gene (59.2%, 61/103). The IncF plasmids also had a high frequency of addiction systems (mean 2.54) and two antisense RNA-regulated systems (hok-sok and srnBC) and a protein antitoxin-regulated system (pemKI) were the most prevalent. Not surprisingly, RFLP profiles among the IncF plasmids were diverse even though some shared identical IncF-RSTs. This is the first extensive study of IncF plasmid-positive E. coli isolates from animals in China. Our results demonstrate that IncF is the most prevalent plasmid family in E. coli plasmids and they commonly carry multiple resistance determinants that render them resistant to different antibiotic classes simultaneously. IncF plasmids also harbor addiction systems, promoting their stability and maintenance in the bacterial host, under changing environmental conditions.

15.
J Glob Antimicrob Resist ; 3(1): 9-12, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27873656

RESUMEN

The aim of this study was to investigate the molecular characteristics of commensal Escherichia coli producing extended-spectrum ß-lactamases and showing fluoroquinolone resistance circulating in a healthy population in Ibadan, Nigeria. In total, 101 faecal samples from healthy pregnant women on the day of admission to hospital were collected and plated on eosin-methylene blue agar supplemented with cefotaxime. Genotyping demonstrated the presence of the blaCTX-M-15 gene in all of the cefotaxime-resistant isolates (n=32), and there was circulation of prevalent clones. The aac(6')-Ib-cr, qnrS1, qepA1 and qnrB1 genes were identified in several strains. A novel plasmid supporting the spread of the blaCTX-M-15, blaTEM-1 and qnrS1 genes was identified in these isolates by complete DNA sequencing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA