Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Orthop Surg Res ; 19(1): 534, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223662

RESUMEN

OBJECTIVE: To investigate in vivo 6-degree-of-freedom (DOF) vertebral motion in patients with isthmic spondylolisthesis (IS) during various functional weight-bearing activities. METHODS: Fifteen asymptomatic volunteers (mean age 54.8 years) and fourteen patients with IS at L4-5 (mean age 53.4 years) were recruited. The positions of the vertebrae (L4-L5) in the supine, standing, flexion-extension, left-right twisting and left-right bending positions were determined using previously described CT-based models and dual fluoroscopic imaging techniques. Local coordinate systems were established at the center of the anterior vertebra of L4 isthmic spondylolisthesis (AIS), the posterior lamina of L4 isthmic spondylolisthesis (PIS) and the center of the L5 vertebra to obtain the 6DOF range of motion (ROM) at L4-L5 and the range of motion (ROM) between the AIS and the PIS. RESULTS: The translation along the anteroposterior axis at L4-L5 during flexion-extension, left-right bending and left-right twisting was significantly greater than that of the healthy participants. However, the translation along the mediolateral axis at L4-L5 presented paradoxical motion under different positions: the ROM increased in the supine-standing and flexion-extension positions but decreased in the left-right bending and left-right twisting positions. The separation along the anteroposterior axis during flexion was significantly greater than that during standing, on average, reaching more than 1 mm. The separation along the mediolateral axis during standing, flexion and extension was significantly greater than that in the supine position. CONCLUSIONS: This study revealed the occurrence of displacement between the AIS and PIS, primarily in the form of separation during flexion. Symptomatic patients with isthmic spondylolisthesis exhibit intervertebral instability, which might be underestimated by flexion-extension radiographs.


Asunto(s)
Vértebras Lumbares , Rango del Movimiento Articular , Espondilolistesis , Soporte de Peso , Humanos , Espondilolistesis/diagnóstico por imagen , Espondilolistesis/fisiopatología , Rango del Movimiento Articular/fisiología , Persona de Mediana Edad , Masculino , Soporte de Peso/fisiología , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/fisiopatología , Femenino , Adulto , Anciano , Fenómenos Biomecánicos
2.
Artículo en Inglés | MEDLINE | ID: mdl-39101251

RESUMEN

PURPOSE: This study aimed to compare in vivo kinematics during weight-bearing daily activities and determine the relationship with clinical outcomes in patients undergoing total knee arthroplasty (TKA) with a medial-pivot (MP, Evolution™) versus a posterior-stabilized (PS, Persona®) design under constant conditions of intraoperative soft tissue balance. METHODS: Forty patients undergoing MP or PS-TKA under similar conditions of soft tissue balance were enrolled in this prospective randomized controlled trial. Outcome measures included clinical knee society scores (KSS) and knee injury and osteoarthritis outcome scores (KOOS). A kinematic assessment was conducted while the participants performed lunge and step-up activities under fluoroscopic guidance. RESULTS: Eighteen patients in each arm completed 1-year follow-up and were included in the analysis. All patients experienced pain relief and satisfactory knee function postoperatively. In kinematics, in the MP arm, the medial femoral condyle remained consistent, whereas the lateral femoral condyle gradually shifted posteriorly with increasing knee flexion. Conversely, in the PS arm, paradoxical anterior movement of the medial femoral condyle accompanied the lateral pivot motion. During lunge and step-up activities, a medial-pivot motion was observed in 83% and 72% of knees in the MP arm, respectively, compared with 22% and 11% in the PS arm. Despite these differences in kinematics, there were no statistically significant differences in the KSS and KOOS between the two groups. CONCLUSION: Under weight-bearing conditions during flexion, knees that underwent Evolution™ MP-TKA did not show superior clinical results compared to Persona® PS-TKA, despite exhibiting in vivo kinematics closely resembling the normal in vivo pattern. LEVEL OF EVIDENCE: Therapeutic studies-Level I.

3.
J Biomech ; 173: 112236, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084063

RESUMEN

Normal biomechanics of the upper cervical spine, particularly at the atlantooccipital joint, remain poorly characterized. The purpose of this study was to determine the intervertebral kinematics of the atlantooccipital joint (occiput-C1) during three-dimensional in vivo physiologic movements. Twenty healthy young adults performed dynamic flexion/extension, axial rotation, and lateral bending while biplane radiographs were collected at 30 images per second. Motion at occiput-C1 was tracked using a validated volumetric model-based tracking process that matched subject-specific CT-based bone models to the radiographs. The occiput-C1 total range of motion (ROM) and helical axis of motion (HAM) was calculated for each movement. During flexion/extension, the occiput-C1 moved almost exclusively in-plane (ROM: 17.9 ± 6.9°) with high variability in kinematic waveforms (6.3°) compared to the in-plane variability during axial rotation (1.4°) and lateral bending (0.9°) movements. During axial rotation, there was small in-plane motion (ROM: 4.2 ± 2.5°) compared to out-of-plane flexion/extension (ROM: 12.7 ± 5.4°). During lateral bending, motion occurred in-plane (ROM: 9.0 ± 3.1°) and in the plane of flexion/extension (ROM: 7.3 ± 2.7°). The average occiput-C1 axis of rotation intersected the sagittal and coronal planes 7 mm to 18 mm superior to the occipital condyles. The occiput-C1 axis of rotation pointed 60° from the sagittal plane during axial rotation but only 10° from the sagittal plane during head lateral bending. These novel results are foundational for future work on upper cervical spine kinematics.


Asunto(s)
Articulación Atlantooccipital , Rango del Movimiento Articular , Humanos , Rango del Movimiento Articular/fisiología , Masculino , Articulación Atlantooccipital/fisiología , Articulación Atlantooccipital/diagnóstico por imagen , Fenómenos Biomecánicos , Femenino , Adulto , Movimiento/fisiología , Rotación , Adulto Joven , Imagenología Tridimensional , Vértebras Cervicales/fisiología , Vértebras Cervicales/diagnóstico por imagen , Tomografía Computarizada por Rayos X
4.
Knee Surg Sports Traumatol Arthrosc ; 32(8): 2075-2086, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38713882

RESUMEN

PURPOSE: Total knee arthroplasty (TKA) stands as a primary intervention for severe knee ailments, yet concerns remain regarding postoperative patient satisfaction and flexion instability. This study aims to evaluate the in-vivo kinematics of medial-pivot (MP) and posterior-stabilised (PS) designs during step-up activity, in comparison to the kinematics of the nonoperated contralateral knee. METHODS: Sixteen patients with PS-TKA and 14 with MP-TKA were retrospectively examined. Clinical outcomes were assessed using patient-completed questionnaires. Motion during step-up was captured using a dual fluoroscopic system. Statistical analysis was applied to evaluate the in-vivo tibiofemoral six-degree-of-freedom kinematics and articular contact positions between the two groups. RESULTS: Despite being older, patients in the MP group reported higher postoperative subjective scores for weight-bearing functional activities. The axial rotation centres of MP-TKA located on the medial tibial plateau exhibited less variance compared to PS-TKA and contralateral knees. Compared to the contralateral knee (contralateral to medial-pivot [C-MP] or contralateral to posterior-stabilised [C-PS]), the MP group exhibited limited range of motion in terms of anteroposterior translation (MP: 3.6 ± 1.3 mm vs. C-MP: 7.4 ± 2.5 mm, p < 0.01) and axial rotation (MP: 6.6 ± 1.9° vs. C-MP: 10.3 ± 4.9°, p = 0.02), as well as in the PS group for anteroposterior translation (PS: 3.9 ± 1.7 mm vs. C-PS: 7.2 ± 3.7 mm, p < 0.01). CONCLUSION: The MP group with better postoperative ratings demonstrated a more stable MP axial rotation pattern during step-up activity compared to the PS group, underscoring the pivotal role of prosthetic design in optimising postoperative rehabilitation and functional recovery. LEVEL OF EVIDENCE: Level III.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Prótesis de la Rodilla , Rango del Movimiento Articular , Soporte de Peso , Humanos , Artroplastia de Reemplazo de Rodilla/métodos , Femenino , Masculino , Estudios Retrospectivos , Anciano , Fenómenos Biomecánicos , Persona de Mediana Edad , Rotación , Articulación de la Rodilla/cirugía , Articulación de la Rodilla/fisiopatología , Diseño de Prótesis , Satisfacción del Paciente , Osteoartritis de la Rodilla/cirugía , Osteoartritis de la Rodilla/fisiopatología , Tibia/cirugía , Inestabilidad de la Articulación/fisiopatología , Resultado del Tratamiento
5.
Heliyon ; 10(10): e30904, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38765031

RESUMEN

Understanding the motion characteristics of cervical spine through biomechanical analysis aids in the identification of abnormal joint movements. This knowledge is essential for the prevention, diagnosis, and treatment of related disorders. However, the anatomical structure of the cervical spine is complex, and traditional medical imaging techniques have certain limitations. Capturing the movement characteristics of various parts of the cervical spine in vivo during motion is challenging. The dual fluoroscopic imaging system (DFIS) is able to quantify the motion and motion patterns of individual segments. In recent years, DFIS has achieved accurate non-invasive measurements of dynamic joint movements in humans. This review assesses the research findings of DFIS about the cervical spine in healthy and pathological individuals. Relevant study search was conducted up to October 2023 in Web of Science, PubMed, and EBSCO databases. After the search, a total of 30 studies were ultimately included. Among them, 13 studies focused on healthy cervical spines, while 17 studies focused on pathological cervical spines. These studies mainly centered on exploring the vertebral bodies and associated structures of the cervical spine, including intervertebral discs, intervertebral foramina, and zygapophyseal joints. Further research could utilize DFIS to investigate cervical spine motion in different populations and under pathological conditions.

6.
J Hand Surg Eur Vol ; : 17531934241242676, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780127

RESUMEN

The distribution of motion between the radiocarpal and midcarpal joints in scapholunate instability is poorly understood. This has potential implications in predicting degenerative changes and in selecting salvage procedures. We studied 19 healthy wrists and 19 wrists with scapholunate instability using dynamic computed tomography during wrist extension to flexion and ulnar to radial deviation. Radiocarpal and midcarpal kinematics of the scaphoid and the lunate were computed. In scapholunate instability, in the radial column, there was increased motion in the radiocarpal joint when the wrist was radially deviating beyond 10° or moving from 70° to 40° extension. In both groups, the capitolunate joint was the dominant articulation in the central column. In scapholunate instability, there was significantly more capitolunate motion during 70° to 30° extension. These changes may predict the development of radioscaphoid arthritis and enable identifying a kinematically abnormal wrist. The motion distribution in scapholunate instability was abnormal beyond 10° of radial deviation and between 70° and 40° of wrist extension.Level of evidence: III.

7.
Gait Posture ; 110: 122-128, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38569401

RESUMEN

BACKGROUND: Landing from heights is a common movement for active-duty military personnel during training. And the additional load they carry while performing these tasks can affect the kinetics and ankle kinematic of the landing. Traditional motion capture techniques are limited in accurately capturing the in vivo kinematics of the talus. This study aims to investigate the effect of additional trunk load on the kinematics of the talocrural and subtalar joints during landing, using a dual fluoroscopic imaging system (DFIS). METHODS: Fourteen healthy male participants were recruited. Magnetic resonance imaging was performed on the right ankle of each participant to create three-dimensional (3D) models of the talus, tibia, and calcaneus. High-speed DFIS was used to capture the images of participants performing single-leg landing jumps from a height of 40 cm. A weighted vest was used to apply additional load, with a weight of 16 kg. Fluoroscopic images were acquired with or without additional loading condition. Kinematic data were obtained by importing the DFIS data and the 3D models in virtual environment software for 2D-3D registration. The kinematics and kinetics were compared between with or without additional loading conditions. RESULTS: During added trunk loading condition, the medial-lateral translation range of motion (ROM) at the talocrural joint significantly increased (p < 0.05). The subtalar joint showed more extension at 44-56 ms (p < 0.05) after contact. The subtalar joint was more eversion at 40-48 ms (p < 0.05) after contact under the added trunk load condition. The peak vertical ground reaction force (vGRF) significantly increased (p < 0.05). CONCLUSIONS: With the added trunk load, there is a significant increase in peak vGRF during landing. The medial-lateral translation ROM of the talocrural joint increases. And the kinematics of the subtalar joint are affected. The observed biomechanical changes may be associated with the high incidence of stress fractures in training with added load.


Asunto(s)
Articulación Talocalcánea , Soporte de Peso , Humanos , Masculino , Fenómenos Biomecánicos , Articulación Talocalcánea/fisiología , Articulación Talocalcánea/diagnóstico por imagen , Soporte de Peso/fisiología , Adulto Joven , Fluoroscopía , Adulto , Imagen por Resonancia Magnética , Astrágalo/fisiología , Astrágalo/diagnóstico por imagen , Imagenología Tridimensional , Torso/fisiología , Rango del Movimiento Articular/fisiología , Articulación del Tobillo/fisiología
8.
World Neurosurg ; 184: e203-e210, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38266986

RESUMEN

OBJECTIVE: This study examined cervical center of rotation (COR) positions in 7 postures using validated cone beam computed tomography (CBCT) combined with 3D-3D registration in healthy volunteers. METHODS: CBCT scans were performed on 20 healthy volunteers in 7 functional positions, constructing a three-dimensional (3D) model. Images were registered to the neutral position using 3D-3D registration, allowing analysis of kinematic differences and rotational axes. COR measurements were obtained for each segment (C2/3 to C6/7) in each posture. RESULTS: The CORs of C2/3 to C6/7 were predominantly posterior (-5.3 ± 3.8 ∼ -0.6 ± 1.2 mm) and superior (16.5 ± 6.0 ∼ 23.6 ± 3.2 mm) to the intervertebral disc's geometric center (GC) in flexion and extension. However, the C4/5 segment's COR was anterior to the GC (2.0 ± 9.8 mm) during flexion and close to it in the right-left direction. During left-right twisting, the CORs of C2/3-C6/7 were posterior (-21.8 ± 10.5 ∼-0.9 ± 0.8 mm) and superior (3.1 ± 7.5 ∼23.2 ± 3.6 mm) to the GCs in anterior-posterior and superior-inferior directions, without consistent right-left directionality. During left-right bending, each segment's COR was predominantly posterior (-25.2 ± 13.1 ∼-6.5 ± 9.9 mm) and superior (0.3 ± 12.5 ∼12.1 ± 5.1 mm) to the GC in anterior-posterior and superior-inferior directions, except for the C2/3 segment, located inferiorly (-5.9 ± 4.1 mm) in left bending. The right-left COR position varied across segments. CONCLUSIONS: Our findings reveal segment-specific and posture-dependent COR variations. Notably, the CORs of C3/4, C4/5, and C5/6 consistently align near the intervertebral disc's GC at different postures, supporting their suitability for total disc replacement surgery within the C3/4 to C5/6 segments.


Asunto(s)
Vértebras Cervicales , Disco Intervertebral , Humanos , Rotación , Fenómenos Biomecánicos , Vértebras Cervicales/cirugía , Postura , Disco Intervertebral/diagnóstico por imagen , Rango del Movimiento Articular
9.
J Hand Surg Eur Vol ; : 17531934241229948, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296227

RESUMEN

The aim of this study was to develop an automated approach model to define in vivo kinematics of the trapeziometacarpal (TMC) joint using four-dimensional computed tomography. A total of 15 healthy volunteers were included and their TMC joint kinematics were studied during a retropulsion-opposition-retropulsion movement. We used cardan angles estimated from transformation matrices using a ZYX-decomposition and analysed the motion of the thumb metacarpal relative to the trapezium, the thumb metacarpal relative to the index metacarpal, and the trapezium relative to the index metacarpal. The study also included an analysis of the joint hysteresis effect and a joint proximity model that estimated the joint contact area during a retropulsion-opposition-retropulsion movement. The automated approach significantly decreased the time needed to analyse each case and makes this model applicable for further research on TMC kinematics.

10.
J Orthop Res ; 42(1): 164-171, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37309814

RESUMEN

Squatting is a common daily activity and fundamental exercise in resistance training and closed kinetic chain programs. The aim of this study was to investigate the effects of an experimentally induced weakness of the gluteal muscles on joint kinematics, reactions forces (JRFs), and dynamic balance performance during deep bilateral squats in healthy young adults. Ten healthy adults received sequential blocks of (1) branch of the superior gluteal nerve to the tensor fasciae latae (SGNtfl) muscle, (2) superior gluteal nerve (SGN), and (3) inferior gluteal nerve (IGN) on the dominant right leg. At the control condition and following each block, the participants were instructed to perform deep bilateral squats standing on two force plates. Hip, knee, ankle, and pelvis kinematics did not differ significantly following iatrogenic weakness of gluteal muscles. The most important finding was the significant differences in JRFs following SGN and IGN block, with the affected hip, patellofemoral, and ankle joint demonstrating lower JRFs, whereas the contralateral joints demonstrated significantly higher JRFs, especially the patellofemoral joint which demonstrated an average maximum difference of 1.43 x body weight compared with the control condition. When performing a deep bilateral leg squat under SGN and IGN block, the subjects demonstrated an increased center of pressure (CoP) range and standard deviation (SD) in mediolateral compared with the control condition. These results imply that squat performance changes significantly following weakness of gluteal muscles and should be considered when assessing and training athletes or patients with these injuries.


Asunto(s)
Articulación de la Cadera , Músculo Esquelético , Adulto Joven , Humanos , Fenómenos Biomecánicos , Articulación de la Cadera/fisiología , Músculo Esquelético/fisiología , Articulación de la Rodilla/fisiología , Nalgas/fisiología , Debilidad Muscular/etiología
11.
J Sport Health Sci ; 13(1): 108-117, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37220811

RESUMEN

BACKGROUND: Foot kinematics, such as excessive eversion and malalignment of the hindfoot, are believed to be associated with running-related injuries. The majority of studies to date show that different foot strike patterns influence these specific foot and ankle kinematics. However, technical deficiencies in traditional motion capture approaches limit knowledge of in vivo joint kinematics with respect to rearfoot and forefoot strike patterns (RFS and FFS, respectively). This study uses a high-speed dual fluoroscopic imaging system (DFIS) to determine the effects of different foot strike patterns on 3D in vivo tibiotalar and subtalar joints kinematics. METHODS: Fifteen healthy male recreational runners underwent foot computed tomography scanning for the construction of 3-dimensional models. A high-speed DFIS (100 Hz) was used to collect 6 degrees of freedom kinematics for participants' tibiotalar and subtalar joints when they adopted RFS and FFS in barefoot condition. RESULTS: Compared with RFS, FFS exhibited greater internal rotation at 0%-20% of the stance phase in the tibiotalar joint. The peak internal rotation angle of the tibiotalar joint under FFS was greater than under RFS (p < 0.001, Cohen's d = 0.92). RFS showed more dorsiflexion at 0%-20% of the stance phase in the tibiotalar joint than FFS. RFS also presented a larger anterior translation (p < 0.001, Cohen's d = 1.28) in the subtalar joint at initial contact than FFS. CONCLUSION: Running with acute barefoot FFS increases the internal rotation of the tibiotalar joint in the early stance. The use of high-speed DFIS to quantify the movement of the tibiotalar and subtalar joint was critical to revealing the effects of RFS and FFS during running.


Asunto(s)
Carrera , Articulación Talocalcánea , Humanos , Masculino , Fenómenos Biomecánicos , Articulación del Tobillo , Tobillo
12.
Front Bioeng Biotechnol ; 11: 1255944, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901843

RESUMEN

Objective: Ankle braces can affect the kinematics of the ankle joint during landing tasks. Previous studies were primarily relied on traditional marker-based motion capture systems, which pose limitations in non-invasively capturing the motion of the talus bone. The effect of ankle braces on the in vivo kinematics of the tibiotalar and subtalar joints during landing remains unknown. This study used a high-speed dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI) to investigate effect of ankle braces on the in vivo kinematics of the tibiotalar and subtalar joints during landing. Methods: Fourteen healthy participants were recruited for this study. During the experiment, static three-dimensional MRI data were collected for each participant, and 3D ankle joint models for the calcaneus, talus, and tibia were constructed. The DFIS was used to capture the images of each participant performing a single-leg landing-jump task at a height of 40 cm. The images were captured once with and without a brace in the fatigue condition, which was induced by running. The six-degree-of-freedom (6DOF) kinematic data were obtained by 2D-3D registration. Results: The flexion-extension range of motion (ROM) (42.73 ± 4.76° vs. 38.74 ± 5.43°, p = 0.049) and anterior-posterior translation ROM (16.86 ± 1.74 mm vs. 15.03 ± 1.73 mm, p = 0.009) of the tibiotalar joint were decreased. The maximum inversion angle (-3.71 ± 2.25° vs. 2.11 ± 1.83°, p = 0.047) of the subtalar joint was decreased. Conclusion: The ankle brace limited the flexion-extension ROM of the tibiotalar joints and the inversion angle of the subtalar joint during landing.

13.
Front Bioeng Biotechnol ; 11: 1252044, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37829568

RESUMEN

Objective: Fatigue can affect the ankle kinematic characteristics of landing movements. Traditional marker-based motion capture techniques have difficulty in accurately obtaining the kinematics of the talocrural and subtalar joints. This study aimed to investigate the effects of fatigue on the talocrural and subtalar joints during the landing using dual fluoroscopic imaging system (DFIS). Methods: This study included fourteen healthy participants. The foot of each participant was scanned using magnetic resonance imaging to create 3D models. High-speed DFIS was used to capture images of the ankle joint during participants performing a single-leg landing jump from a height of 40 cm. Fatigue was induced by running and fluoroscopic images were captured before and after fatigue. Kinematic data were obtained by 3D/2D registration in virtual environment software. The joint kinematics in six degrees of freedom and range of motion (ROM) were compared between the unfatigued and fatigued conditions. Results: During landing, after the initial contact with the ground, the main movement of the talocrural joint is extension and abduction, while the subtalar joint mainly performs extension, eversion, and abduction. Compared to unfatigued, during fatigue the maximum medial translation (1.35 ± 0.45 mm vs. 1.86 ± 0.69 mm, p = 0.032) and medial-lateral ROM (3.19 ± 0.60 mm vs. 3.89 ± 0.96 mm, p = 0.029) of the talocrural joint significantly increased, the maximum flexion angle (0.83 ± 1.24° vs. 2.11 ± 1.80°, p = 0.037) of the subtalar joint significantly increased, and the flexion-extension ROM (6.17 ± 2.21° vs. 7.97 ± 2.52°, p = 0.043) of the subtalar joint significantly increased. Conclusion: This study contributes to the quantitative understanding of the normal function of the talocrural and subtalar joints during high-demand activities. During landing, the main movement of the talocrural joint is extension and abduction, while the subtalar joint mainly performs extension, eversion, and abduction. Under fatigue conditions, the partial ROM of the talocrural and subtalar joints increases.

14.
Front Bioeng Biotechnol ; 11: 1251324, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744258

RESUMEN

Existing studies on the biomechanical characteristics of the first metatarsophalangeal joint (1st MTPJ) during shod running are limited to sagittal plane assessment and rely on skin marker motion capture, which can be affected by shoes wrapping around the 1st MTPJ and may lead to inaccurate results. This study aims to investigate the in vivo effects of different habitual foot strike patterns (FSP) on the six degrees of freedom (6DOF) values of the 1st MTPJ under shod condition by utilizing a dual-fluoroscopic imaging system (DFIS). Long-distance male runners with habitual forefoot strike (FFS group, n = 15) and rearfoot strike (RFS group, n = 15) patterns were recruited. All participants underwent foot computed tomography (CT) scan to generate 3D models of their foot. The 6DOF kinematics of the 1st MTPJ were collected using a DFIS at 100 Hz when participants performed their habitual FSP under shod conditions. Independent t-tests and one-dimensional statistical parametric mapping (1-d SPM) were employed to analyze the differences between the FFS and RFS groups' 1st MTPJ 6DOF kinematic values during the stance phase. FFS exhibited greater superior translation (3.5-4.9 mm, p = 0.07) during 51%-82% of the stance and higher extension angle (8.4°-10.1°, p = 0.031) during 65%-75% of the stance in the 1st MTPJ than RFS. Meanwhile, FFS exhibited greater maximum superior translation (+3.2 mm, p = 0.022), maximum valgus angle (+6.1°, p = 0.048) and varus-valgus range of motion (ROM) (+6.5°, p = 0.005) in the 1st MTPJ during stance. The greater extension angle of the 1st MTPJ in the late stance suggested that running with FFS may enhance the propulsive effect. However, the higher maximum valgus angle and the ROM of varus-valgus in FFS may potentially lead to the development of hallux valgus.

15.
Ann Biomed Eng ; 51(10): 2237-2244, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37261589

RESUMEN

This study aimed to develop and validate a novel flexion axis concept by calculating the points on femoral condyles that could maintain constant heights during knee flexion. Twenty-two knees of 22 healthy subjects were investigated when performing a weightbearing single leg lunge. The knee positions were captured using a validated dual fluoroscopic image system. The points on sagittal planes of the femoral condyles that had minimal changes in heights from the tibial plane along the flexion path were calculated. It was found that the points do formulate a medial-lateral flexion axis that was defined as the iso-height axis (IHA). The six degrees of freedom (6DOF) kinematics data calculated using the IHA were compared with those calculated using the conventional transepicondylar axis and geometrical center axis. The IHA measured minimal changes in proximal-distal translations and varus-valgus rotations along the flexion path, indicating that the IHA may have interesting clinical implications. Therefore, identifying the IHA could provide an alternative physiological reference for improvement of contemporary knee surgeries, such as ligament reconstruction and knee replacement surgeries that are aimed to reproduce normal knee kinematics and medial/lateral soft tissue tensions during knee flexion.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Articulación de la Rodilla , Humanos , Articulación de la Rodilla/fisiología , Artroplastia de Reemplazo de Rodilla/métodos , Fémur/fisiología , Tibia/fisiología , Rango del Movimiento Articular , Soporte de Peso/fisiología , Fenómenos Biomecánicos
16.
Med Eng Phys ; 111: 103948, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36792241

RESUMEN

Robot-assisted surgical systems can predict post-operative kinematics based upon intra-operative passive kinematics, planned implant position and alignment, and soft-tissue tension. It is currently unknown how well the intra-operative passive kinematics replicate the post-surgical weight bearing active kinematics. This study compared intra-operative and post-operative tibiofemoral implant contact paths after medial unicompartmental knee arthroplasty (mUKA). Passive intraoperative and active postoperative tibiofemoral contact path data was collected from eight patients who underwent mUKA. Intraoperative contact path data was measured using a navigation system. Postoperative contact path data was measured during walking, chair rise, stair ascent, and stair descent using a biplane radiography system and a validated tracking process. A total of 86 movement trials were included in the analysis. The contact point on the femur implant was up to 9.8 mm more medial and up to 8.3 mm less anterior at low flexion angles during activities of daily living than during passive extension intra-operatively, and the contact point on the tibia implant was up to 13.8 mm less lateral and up to 5.8 mm less posterior at low flexion angles during activities of daily living than during intra-operative passive extension. Femoral contact paths primarily differed between 3° and 42° of flexion; and tibial contact paths differed between 3° and 50° of flexion. This pilot study is the first to compare intra-operative and post-operative weight bearing contact paths. The primary conclusions from this study are that contact points on the femur implant are more medial and less anterior at low flexion angles during activities of daily living than during passive extension intra-operatively, and that the contact points on the tibia implant are less lateral at low flexion angles during activities of daily living than during intra-operative passive extension.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Prótesis de la Rodilla , Humanos , Articulación de la Rodilla/cirugía , Actividades Cotidianas , Proyectos Piloto , Fémur/cirugía , Tibia/cirugía , Fenómenos Biomecánicos , Rango del Movimiento Articular
17.
J Orthop Res ; 41(7): 1439-1448, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36484121

RESUMEN

Although an anterior cruciate ligament (ACL) deficiency induces knee osteoarthritis, particularly in the medial compartment, the kinematics remains partially unclear. This study investigated the in vivo knee kinematics of ACL-deficient and normal knees by comparing them during squatting. This prospective comparative study included 17 ACL-deficient knees and 20 normal knees. The kinematics was investigated under fluoroscopy using a two- to three-dimensional registration technique. The anteroposterior (AP) translation of the medial and lateral sides of the femur, axial rotation of the femur relative to the tibia, and kinematic pathways were evaluated and compared. At first, the medial AP position of the femur translated anteriorly from 0° to midflexion, afterward it translated posteriorly in both ACL-deficient and normal knees. However, the medial AP position of the femur in the ACL-deficient knees was located significantly posteriorly compared with normal knees at 0-110° flexion. The lateral AP position of the femur translated posteriorly from 0° to 150° flexion in both ACL-deficient and normal knees. The lateral AP position of the femur in the ACL-deficient knees was located significantly posteriorly compared with that in normal knees at 0-10° flexion. The femur showed external rotation from 0° to 150° flexion in both ACL-deficient and normal knees. A medial pivot motion and subsequent bicondylar rollback were observed in both knees in the kinematic pathway. In conclusion, the AP position of the femur relative to the tibia was altered due to ACL deficiency, particularly in the medial compartment.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Humanos , Estudios Prospectivos , Articulación de la Rodilla , Fémur , Tibia , Rango del Movimiento Articular , Fenómenos Biomecánicos
18.
Front Bioeng Biotechnol ; 10: 960063, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061441

RESUMEN

Traditional optical motion capture (OMC) with retroreflective markers is commonly used to measure joint kinematics but was also reported with unavoidable soft tissue artifacts (STAs) when quantifying the motion of the spine. Additionally, the patterns of the STA on the lumbar spine remain unclear. This study aimed to 1) quantify the in vivo STAs of the human lower back in three-dimensional directions during weight-bearing forward-backward bending and 2) determine the effects of the STAs on the calculated flexion angles between the upper and lower lumbar spines and adjacent vertebrae by comparing the skin marker (SM)- and virtual bone marker (VM)-based measurements. Six healthy volunteers were imaged using a biplanar radiographic system, and thirteen skin markers were mounted on every volunteer's lower back while performing weight-bearing forward-backward bending. The STAs in the anterior/posterior (AP), medial/lateral (ML), and proximal/distal (PD) directions were investigated. The flexion angles between the upper and lower lumbar segments and adjacent intervertebral segments (L2-L5) throughout the cycle were calculated. For all the participants, STAs continuously increased in the AP direction and exhibited a reciprocal trend in the PD direction. During flexion, the STA at the lower lumbar region (L4-L5: 13.5 ± 6.5 mm) was significantly higher than that at the upper lumbar (L1-L3: 4.0 ± 1.5 mm) in the PD direction (p < 0.01). During extension, the lower lumbar (L4-L5: 2.7 ± 0.7 mm) exhibited significantly less STAs than that exhibited by the upper lumbar region (L1-L3: 6.1 ± 3.3 mm) (p < 0.05). The STA at the spinous process was significantly lower than that on both sides in the AP direction (p < 0.05). The present results on STAs, based on dual fluoroscopic measurements in healthy adult subjects, presented an anatomical direction, marker location, and anatomic segment dependency, which might help describe and quantify STAs for the lumbar spine kinematics and thus help develop location- and direction-specific weighting factors for use in global optimization algorithms aimed at minimizing the effects of STAs on the calculation of lumbar joint kinematics in the future.

19.
Clin Biomech (Bristol, Avon) ; 99: 105762, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36148703

RESUMEN

BACKGROUND: This study aimed to determine the kinematics of medial pivot total knee arthroplasty by comparing weight-bearing and non-weight-bearing deep knee bending and to evaluate the effect of the weight-bearing state on the kinematics. METHODS: The kinematics of 19 knees were investigated under fluoroscopy during squatting (weight-bearing) and active-assisted knee bending (non-weight-bearing) using two- to three-dimensional registration technique. Accordingly, range of motion, anteroposterior translation for the medial and lateral low contact points, axial rotation of the femoral component relative to the tibial component and kinematic pathway were evaluated. FINDINGS: There was no difference in range of motion between the two states. The medial anteroposterior translation showed no significant movement with no anterior translation in both the weight-bearing and non-weight-bearing from 0° to 90° of flexion. Regarding the lateral anteroposterior translation, a posterior translation was observed during weight-bearing, whereas a slight anterior translation from 0° to 30° of flexion and subsequent posterior translation were found in the non-weight-bearing. Femoral external rotation was observed in the weight-bearing, whereas femoral internal rotation was seen from 0° to 30° of flexion and subsequent femoral external rotation was observed in the non-weight-bearing. The kinematic pathway showed medial pivot motion and subsequent bicondylar rollback in the weight-bearing, whereas only medial pivot motion was observed in the non-weight-bearing. INTERPRETATION: The medial anteroposterior translation of the femur during deep knee bending showed no anterior motion in the two states. The lateral anteroposterior translation and femoral rotation were different in the mid-flexion range between the two states.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Prótesis de la Rodilla , Artroplastia de Reemplazo de Rodilla/métodos , Fenómenos Biomecánicos , Humanos , Articulación de la Rodilla/cirugía , Rango del Movimiento Articular , Soporte de Peso
20.
Front Bioeng Biotechnol ; 10: 917675, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837546

RESUMEN

Shoes affect the biomechanical properties of the medial longitudinal arch (MLA) and further influence the foot's overall function. Most previous studies on the MLA were based on traditional skin-marker motion capture, and the observation of real foot motion inside the shoes is difficult. Thus, the effect of shoe parameters on the natural MLA movement during running remains in question. Therefore, this study aimed to investigate the differences in the MLA's kinematics between shod and barefoot running by using a high-speed dual fluoroscopic imaging system (DFIS). Fifteen healthy habitual rearfoot runners were recruited. All participants ran at a speed of 3 m/s ± 5% along with an elevated runway in barefoot and shod conditions. High-speed DFIS was used to acquire the radiographic images of MLA movements in the whole stance phase, and the kinematics of the MLA were calculated. Paired sample t-tests were used to compare the kinematic characteristics of the MLA during the stance phase between shod and barefoot conditions. Compared with barefoot, shoe-wearing showed significant changes (p < 0.05) as follows: 1) the first metatarsal moved with less lateral direction at 80%, less anterior translation at 20%, and less superiority at 10-70% of the stance phase; 2) the first metatarsal moved with less inversion amounting to 20-60%, less dorsiflexion at 0-10% of the stance phase; 3) the inversion/eversion range of motion (ROM) of the first metatarsal relative to calcaneus was reduced; 4) the MLA angles at 0-70% of the stance phase were reduced; 5) the maximum MLA angle and MLA angle ROM were reduced in the shod condition. Based on high-speed DFIS, the above results indicated that shoe-wearing limited the movement of MLA, especially reducing the MLA angles, suggesting that shoes restricted the compression and recoil of the MLA, which further affected the spring-like function of the MLA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA