Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(37): 11385-11392, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39225724

RESUMEN

To overcome obstacles hindering the commercialization of lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), we introduce a cost-effective single-step sulfurization strategy for synthesizing iron sulfide (Fe0.975S) nanohybrids, augmented by N,S codoped carbon. The resulting N,S codoped carbon-coated Fe0.975S (Fe0.975S@NSC) electrode exhibits exceptional potential as a highly reversible anode material for both LIBs and SIBs. With impressive initial discharge and charge capacities (1658.2 and 1254.9 mAh g-1 for LIBs and 1450.9 and 1077.1 mAh g-1 for SIBs), the electrode maintains substantial capacity retention (900 mA h g-1 after 1000 cycles for LIBs and 492.5 mA h g-1 after 600 cycles for SIBs at 1.0 A g-1). The LiMn2O4//Fe0.975S@NSC and Na3V2(PO4)3//Fe0.975S@NSC full batteries can maintain excellent reversible capacity and robust cycling stability. Ex situ and in situ X-ray diffraction, density functional theory (DFT) calculations, and kinetics analysis confirm the promising energy storage potential of the Fe0.975S@NSC composite.

2.
J Colloid Interface Sci ; 678(Pt A): 436-446, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39213996

RESUMEN

FeS, with its high theoretical capacity and natural abundance, holds significant promise as an anode material for lithium-ion batteries (LIBs). However, its practical application is constrained by poor electrical conductivity and substantial volume expansion during cycling, which impair charge-discharge efficiency and cycling stability. To overcome these challenges, we developed a nitrogen and sulfur co-doped carbon-encapsulated FeS composite with a hollow double-layer structure (HDL-FeS@NSC). Utilizing sulfur spheres as a sacrificial template, our inside-out synthesis strategy produces a unique material design. The HDL-FeS@NSC composite exhibits significant improvements in electrochemical performance compared to pure FeS. These enhancements are due to its increased specific surface area, which facilitates lithium-ion diffusion; a shortened Li+ diffusion pathway; structural stability that mitigates volume expansion; and an optimized carbon layer that boosts conductivity. The HDL-FeS@NSC-70 anode demonstrates a specific capacity of 879.6 mAh/g after 600 cycles at 1.0 A/g and retains 558.0 mAh/g at 5.0 A/g. Additionally, the lithium storage mechanism has been thoroughly investigated using in-situ techniques. These results suggest that the HDL-FeS@NSC composite anode has the potential to significantly enhance lithium-ion battery performance, offering a promising solution for next-generation energy storage systems.

3.
J Colloid Interface Sci ; 677(Pt B): 769-779, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39173510

RESUMEN

Potassium-ion batteries (PIBs) are gaining attention among emerging technologies for their cost-effectiveness and the abundance of resources they utilize. Within this context, bismuth oxyhalides (BiOX) have emerged as exceptional candidates for anode materials in PIBs due to their unique structural and superior electrochemical properties. However, challenges such as structural instability and low electronic conductivity remain to be addressed. In this study, a flower-like BiOBr0.5Cl0.5/rGO composite anode material was synthesized, demonstrating outstanding K+ storage performance. The self-hybridized structure enhances ion adsorption and diffusion, which in turn improves charge and discharge efficiency as well as long-term stability. In situ X-ray diffraction (XRD) tests confirmed the gradual release and alloying potassium storage mechanism of Bi metal, which occurs through the intermediate KxBiOBr0.5Cl0.5 phase within the BiOBr0.5Cl0.5 anode. This composite exhibited a high specific capacity of 246.4 mAh/g at 50 A/g and maintained excellent capacity retention after 2400 cycles at 5 A/g. Additionally, in full battery tests, it showed good rate performance and long cycle life, maintaining a discharge specific capacity of 119.6 mAh/g at a high current density of 10 A/g. Comprehensive characterizations revealed insights into the structural, electrochemical, and kinetic properties, advancing high-performance PIBs.

4.
Small ; : e2404193, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189537

RESUMEN

2D transitional metal selenide heterostructures are promising electrode materials for potassium-ion batteries (PIBs) owing to the large surface area, high mechanical strength, and short diffusion pathways. However, the cycling performance remains a significant challenge, particularly concerning the electrochemical conversion reaction. Herein, 2D Se-rich ZnSe/CoSe2@C heterostructured composite is fabricated via a convenient hydrothermal approach followed by selenization process, and then applied as high-performance anodes for PIBs. For example, the capacity delivered by the heterostructured composite is mainly contributed to the synergistic effect of conversion and alloy/de-alloy processes aroused by K+, where K+ may highly insert or de-insert into Se-rich ZnSe/CoSe2@C. The obtained electrode delivers an outstanding reversible charge capacity of 214 mA h g-1 at 1 A g-1 after 4000 cycles for PIBs, and achieves 262 mAh g-1 when coupled with a PTCDA cathode in the full cell. The electrochemical conversion mechanism of the optimized electrode during cycling is investigated through in situ XRD, Raman, and ex situ HRTEM. In addition, the heterostructured composite as anodes also displays excellent electrochemical performances for sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs). This work opens up a new window for investigating novel electrode materials with excellent capacity and long durability.

5.
Small ; : e2403736, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990899

RESUMEN

Transition metal selenides (TMSs) are receiving considerable interest as improved anode materials for sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs) due to their considerable theoretical capacity and excellent redox reversibility. Herein, ZIF-12 (zeolitic imidazolate framework) structure is used for the synthesis of Cu2Se/Co3Se4@NPC anode material by pyrolysis of ZIF-12/Se mixture. When Cu2Se/Co3Se4@NPC composite is utilized as an anode electrode material in LIB and SIB half cells, the material demonstrates excellent electrochemical performance and remarkable cycle stability with retaining high capacities. In LIB and SIB half cells, the Cu2Se/Co3Se4@NPC anode material shows the ultralong lifespan at 2000 mAg-1, retaining a capacity of 543 mAhg-1 after 750 cycles, and retaining a capacity of 251 mAhg-1 after 200 cycles at 100 mAg-1, respectively. The porous structure of the Cu2Se/Co3Se4@NPC anode material can not only effectively tolerate the volume expansion of the electrode during discharging and charging, but also facilitate the penetration of electrolyte and efficiently prevents the clustering of active particles. In situ X-ray difraction (XRD) analysis results reveal the high potential of Cu2Se/Co3Se4@NPC composite in building efficient LIBs and SIBs due to reversible conversion reactions of Cu2Se/Co3Se4@NPC for lithium-ion and sodium-ion storage.

6.
Chemistry ; : e202304106, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083260

RESUMEN

Sodium-oxygen batteries have been regarded as promising energy storage devices due to their low overpotential and high energy density. Its applications, however, still face formidable challenges due to the lack of understanding about the influence of electrocatalysts on the discharge products. Here, a phosphorous and nitrogen dual-doped carbon (PNDC) based cathode is synthesized to increase the electrocatalytic activity and to stabilize the NaO2 superoxide nanoparticle discharge products, leading to enhanced cycling stability when compared to the nitrogen-doped carbon (NDC). The PNDC air cathode exhibits a low overpotential (0.36 V) and long cycling stability (120 cycles). The reversible formation/decomposition and stabilization of the NaO2 discharge products are clearly proven by in-situ synchrotron X-ray diffraction and ex-situ X-ray diffraction. Based on the density functional theory calculation, the PNDC has much stronger adsorption energy (-2.85 eV) for NaO2 than that of NDC (-1.80 eV), which could efficiently stabilize the NaO2 discharge products.

7.
Nanomaterials (Basel) ; 14(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38869568

RESUMEN

In this study, nanoporous TiO2 with hierarchical micro/nanostructures was synthesized on a large scale by a facile one-step solvothermal method at a low temperature. A series of characterizations was performed and carried out on the as-prepared photocatalysts, which were applied to the degradation of the antibiotic tetracycline (TC). The results demonstrated that nanoporous TiO2 obtained at a solvothermal temperature of 100 °C had a spherical morphology with high crystallinity and a relatively large specific surface area, composed of a large number of nanospheres. The nanoporous TiO2 with hierarchical micro/nanostructures exhibited excellent photocatalytic degradation activity for TC under simulated sunlight. The degradation rate was close to 100% after 30 min of UV light irradiation, and reached 79% only after 60 min of visible light irradiation, which was much better than the photodegradation performance of commercial TiO2 (only 29%). Moreover, the possible intermediates formed during the photocatalytic degradation of TC were explored by the density functional theory calculations and HPLC-MS spectra. Furthermore, two possible degradation routes were proposed, which provided experimental and theoretical support for the photocatalytic degradation of TC. In this study, we provide a new approach for the hierarchical micro/nanostructure of nanoporous TiO2, which can be applied in industrial manufacturing fields.

8.
J Colloid Interface Sci ; 674: 249-255, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38936081

RESUMEN

Polypyrrole-coated CuInS2 (CuInS2@PPy) composite was prepared through the chemical vapor transport method and subsequent in situ polymerized coating strategy. In this unique nanoarchitecture, the PPy coating layer plays a crucial role in improving the conductivity of the composite, suppressing the volume change of CuInS2, and maintaining the structural integrity of electrode material upon cycling. In addition, the electrochemical reaction mechanism and kinetics of CuInS2@PPy were investigated in-depth. Benefitting from the synergism of its combinational intercalation-conversion-intercalation reaction mechanism and the high conductivity of the PPy coating layer, CuInS2@PPy electrode exhibits superior rate capability and cycling stability for sodium-ion batteries, with a capacity of 404.8 mA h g-1 at 4 A g-1 over 2500 cycles.

9.
Environ Res ; 255: 119203, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38782347

RESUMEN

The hydrogenation of CO2 to CH4 has gained considerable interest in terms of sustainable energy and environmental mitigation. In this regard, the present work aims to investigate the adsorptive concentration and CO2 methanation performance over CoFe and NiFe bimetallic catalysts supported on fumed alumina-silica SA96 support at 170-450 °C and under atmospheric pressure. The catalysts were prepared by wet impregnation method, subjected to calcination and further reduced with hydrogen, and their performance in CO2 methanation was investigated in a hydrogen-rich 2%CO2-55%H2-43%He gas mixture. In this study, we describe the crystal and mesoporous structures of the prepared catalysts by in-situ XRD and ex-situ nitrogen adsorption, evaluate the NiFe and CoFe metal surface states before and after catalysis by XPS, visualize the surface morphology by SEM, estimate the catalytic activity by gas chromatography, and investigate the adsorbed surface species, showing the presence of *HCOO/*HCO and *CO intermediates, determine two possible pathways of CH4 formation on the studied catalysts by temperature-programmed desorption mass spectrometry, and correlate the structural and surface properties with high CO2 conversions up to 100% and methanation selectivities up to 72%. The latter is related to changes in the elemental chemical states and surface composition of CoFe and NiFe nanocatalysts induced by treatment under reaction conditions, and the surface reconstruction during catalysis transfers the part of active 3d transition metals into the pores of the SA96 support. Our thorough characterization study with complementary techniques allowed us to conclude that this high activity is related to the formation of catalytically active Ni/Ni3Fe and Co/CoFeOx nanoscale crystallites under H2 reduction and their maintenance under CO2 methanation conditions. The successfully applied combination of CO2 chemisorption and thermodesorption techniques demonstrates the ability to adsorb the CO2 molecules by supported NiFe and CoFe nanocatalysts and the pure alumina-silica SA96 support.


Asunto(s)
Óxido de Aluminio , Dióxido de Carbono , Cobalto , Metano , Níquel , Dióxido de Silicio , Propiedades de Superficie , Óxido de Aluminio/química , Catálisis , Dióxido de Carbono/química , Metano/química , Níquel/química , Cobalto/química , Dióxido de Silicio/química , Hierro/química , Adsorción
10.
ACS Appl Mater Interfaces ; 16(21): 27394-27399, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38752670

RESUMEN

In the continuous pursuit of an energy-efficient alternative to the energy-intensive mechanochemical process, we developed a coprecipitation strategy for synthesizing halide-based solid-state electrolytes that warrant both structural control and commercial scalability. In this study, we propose a new coprecipitation approach to synthesized Li3InCl6, exhibiting both structural and electrochemical performance stability, with a high ionic conductivity of 1.42 × 10-3 S cm-1, comparable to that of traditionally prepared counterparts. Through the in situ synchrotron X-ray diffraction technique, we unveil the stability mechanisms and rapid chemical reactions of Li3InCl6 under dry Ar, dry O2, and high-humidity atmosphere, which were not previously reported. Furthermore, the fast reversibility capability of moisture-exposed Li3InCl6 was tracked under vacuum, revealing the optimal recovery conditions at low temperatures (150-200 °C). This work addresses the critical challenges in structural engineering and sustainable mass production and provides insights into chemical reactions under real-world conditions.

11.
Angew Chem Int Ed Engl ; 63(29): e202404047, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38703385

RESUMEN

The urgency to mitigate environmental impacts from anthropogenic CO2 emissions has propelled extensive research efforts on CO2 reduction. The current work reports a novel approach involving transforming CO2 and ethane into carbon nanotubes (CNTs) using earth-abundant metals (Fe, Co, Ni) at 750 °C. This route facilitates long-term carbon storage via generating high-value CNTs and produces valuable syngas with adjustable H2/CO ratios as byproducts. Without CO2, direct pyrolysis of ethane undergoes rapid deactivation. The participation of CO2 not only enhances the durability of the catalyst, but also contributes about 30 % of the CNTs production, presenting a viable solution to CO2 challenges. The CNT morphology depends on the catalyst used. Co- and Ni-based catalysts produce CNT with a 20 nm diameter and micrometer length, whereas Fe-based catalysts yield bamboo-like structures. This work represents a pioneering effort in utilizing CO2 and ethane for CNT production with potential environmental and economic benefits.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38616703

RESUMEN

Na3V2(PO4)2F3 (NVPF) has been regarded as a favorable cathode for sodium-ion batteries (SIBs) due to its high voltage and stable structure. However, the limited electronic conductivity restricts its rate performance. NVPF@reduced graphene oxide (rGO) was synthesized by a facile microwave-assisted hydrothermal approach with subsequent calcination to shorten the hydrothermal time. NVPF nanocuboids with sizes of 50-150 nm distributed on rGO can be obtained, delivering excellent electrochemical performance such as a longevity life (a high capacity retention of 85.6% after 7000 cycles at 10 C) and distinguished rate capability (116 mAh g-1 at 50 C with a short discharging/charging time of 1.2 min). The full battery with a Cu2Se anode represents a capacity of 116 mAh g-1 at 0.2 A g-1. The introduction of rGO can augment the electronic conductivity and advance the Na+ diffusion speed, boosting the cycling and rate capability. Besides, the small lattice change (3.3%) and high structural reversibility during the phase transition process between Na3V2(PO4)2F3 and NaV2(PO4)2F3 testified by in situ X-ray diffraction are also advantageous for Na storage behavior. This work furnishes a simple method to synthesize polyanionic cathodes with ultrahigh rate and ultralong lifespan for fast-charging SIBs.

13.
Small ; 20(32): e2400099, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38507728

RESUMEN

Profiting from the unique atomic laminated structure, metallic conductivity, and superior mechanical properties, transition metal carbides and nitrides named MAX phases have shown great potential as anodes in lithium-ion batteries. However, the complexity of MAX configurations poses a challenge. To accelerate such application, a minus integrated crystal orbital Hamilton populations descriptor is innovatively proposed to rapidly evaluate the lithium storage potential of various MAX, along with density functional theory computations. It confirms that surface A-element atoms bound to lithium ions have odds of escaping from MAX. Interestingly, the activated A-element atoms enhance the reversible uptake of lithium ions by MAX anodes through an efficient alloying reaction. As an experimental verification, the charge compensation and SnxLiy phase evolution of designed Zr2SnC MAX with optimized structure is visualized via in situ synchrotron radiation XRD and XAFS technique, which further clarifies the theoretically expected intercalation/alloying hybrid storage mechanism. Notably, Zr2SnC electrodes achieve remarkably 219.8% negative capacity attenuation over 3200 cycles at 1 A g-1. In principle, this work provides a reference for the design and development of advanced MAX electrodes, which is essential to explore diversified applications of the MAX family in specific energy fields.

14.
Heliyon ; 10(4): e26543, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420458

RESUMEN

The multi-layer composite development primarily aims to develop and test the components of the next generation of hadron colliders (e.g., Large Hadron Collider - LHC) consisting of superconducting raw materials. Multilayer sheet is very similar to the commonly used NbTi wire products, a 2D version of the commercial wire. These composites consist of layers such as NbTi superconductor, Nb diffusion barrier (between NbTi and Cu) and Cu stabilizer. In ß-NbTi superconducting alloys, α-Ti precipitates are primary flux pinning centers that maintain stable superconductivity. A multi-step series of heat treatments and cold-forming processes can develop the flux pinning centers. Practically, this process means three heat treatments of constant period and temperature and drawing or rolling between the heat treatments. The study aimed to describe the behavior of the cold-rolled (ε = 3.35) Nb53Ti47w% alloys during isothermal heating at 673 K as a function of heating time. The processes during the aging were investigated by the in-situ XRD method in the heating chamber. The X-ray diffraction patterns were evaluated by Rietveld refinement. The thermally activated spinodal decomposition and precipitation processes were described based on the phases identified at the individual heat treatment steps and their lattice parameters. The in-situ study also revealed an increase in α-Ti precipitation with time and decomposition that co-occurs. This is the basic study that prepares the applicability of the alloy.

15.
J Colloid Interface Sci ; 661: 1070-1081, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38368230

RESUMEN

The growing use of EVs and society's energy needs require safe, affordable, durable, and eco-friendly high-energy lithium-ion batteries (LIBs). To this end, we synthesized and investigated the removal of Co from Al-doped Ni-rich cathode materials, specifically LiNi0.9Co0.1Al0.0O2 (NCA-0), LiNi0.9Mn0.1Al0.0O2 (NMA-0), LiNi0.9Mn0.07Al0.03O2 (NMA-3), intending to enhance LIB performance and reduce the reliance on cobalt, a costly and scarce resource. Our study primarily focuses on how the removal of Co affects the material characteristics of Ni-rich cathode material and further introduces aluminum into the cathode composition to study its impacts on electrochemical properties and overall performance. Among the synthesized samples, we discovered that the NMA-3 sample, modified with 3 mol% of Al, exhibited superior battery performance, demonstrating the effectiveness of aluminum in promoting cathode stability. Furthermore, the Al-modified cathode showed promising cycle life under normal and high-temperature conditions. Our NMA-3 demonstrated remarkable capacity retention of âˆ¼ 88 % at 25 °C and âˆ¼ 81 % at 45 °C after 200 cycles at 1C, within a voltage range of 2.8-4.3 V, closely matching the performances of conventional NCM and NCA cathodes. Without cobalt, the cathodes exhibited increased cation disorder leading to inferior rate capabilities at high C-rates. In-situ transmission XRD analysis revealed that the introduction of Al has reduced the phase change and provided much-needed stability to the overall structure of the Co-free NMA-3. Altogether, the findings suggest that our aluminum-modified NMA-3 sample offers a promising approach to developing Co-free, Ni-rich cathodes, effectively paving the way toward sustainable, high-energy-density LIBs.

16.
Small ; 20(2): e2305606, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37670544

RESUMEN

Li-rich Mn-based cathodes have been regarded as promising cathodes for lithium-ion batteries because of their low cost of raw materials (compared with Ni-rich layer structure and LiCoO2 cathodes) and high energy density. However, for practical application, it needs to solve the great drawbacks of Li-rich Mn-based cathodes like capacity degradation and operating voltage decline. Herein, an effective method of surface modification by benzene diazonium salts to build a stable interface between the cathode materials and the electrolyte is proposed. The cathodes after modification exhibit excellent cycling performance (the retention of specific capacity is 84.2% after 350 cycles at the current density of 1 C), which is mainly attributed to the better stability of the structure and interface. This work provides a novel way to design the coating layer with benzene diazonium salts for enhancing the structural stability under high voltage condition during cycling.

17.
Small ; : e2306369, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38054776

RESUMEN

Cobalt sulfide is deemed a promising anode material, owing to its high theoretical capacity (630 mAh g-1 ). Due to its low conductivity, fast energy decay, and the huge volume change during the lithiation process limits its practical application. In this work, a simple and large-scale method are developed to prepare Co1-x S nanoparticles embedding in N-doped carbon/graphene (CSCG). At a current density of 0.2 C, the reversible discharge capacity of CSCG maintains 937 mAh g-1 after 200 cycles. The discharge capacity of CSCG maintains at 596 mAh g-1 after 500 cycles at the high current density of 2.0 C. The excellent performance of CSCG is due to its unique structural features. The addition of rGO buffered volume changes while preventing Co1-x S from crushing/aggregating during the cycle, resulting in multiplier charge-discharge and long cycle life. The N-doped carbon provides a simple and easy way to achieve excellent performance in practical applications. Combined with density functional theory calculation, the presence of Co-vacancies(Co1-x ) increases more active site. Moreover, N-doping carbon is beneficial to the improve adsorption energy. This work presents a simple and effective structural engineering strategy and also provides a new idea to improve the performance of Li-ion batteries.

18.
Materials (Basel) ; 16(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37763493

RESUMEN

The reduction of Co-based oxides doped with Al3+ ions has been studied using in situ XRD and TPR techniques. Al3+-modified Co3O4 oxides with the Al mole fraction Al/(Co + Al) = 1/6; 1/7.5 were prepared via coprecipitation, with further calcination at 500 and 850 °C. Using XRD and HAADF-STEM combined with EDS element mapping, the Al3+ cations were dissolved in the Co3O4 lattice; however, the cation distribution differed and depended on the calcination temperature. Heating at 500 °C led to the formation of an inhomogeneous (Co,Al)3O4 solid solution; further treatment at 850 °C provoked the partial decomposition of mixed Co-Al oxides and the formation of particles with an Al-depleted interior and Al-enriched surface. It has been shown that the reduction of cobalt oxide by hydrogen occurs via the following transformations: (Co,Al)3O4 → (Co,Al)O → Co. Depending on the Al distribution, the course of reduction changes. In the case of the inhomogeneous (Co,Al)3O4 solid solution, Al stabilizes intermediate Co(II)-Al(III) oxides during reduction. When Al3+ ions are predominantly on the surface of the Co3O4 particles, the intermediate compound consists of Al-depleted and Al-enriched Co(II)-Al(III) oxides, which are reduced independently. Different distributions of elemental Co and Al in mixed oxides simulate different types of the interaction phase in Co3O4/γ-Al2O3-supported catalysts. These changes in the reduction properties can significantly affect the state of an active component of the Co-based catalysts.

19.
Chemosphere ; 340: 139789, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37598948

RESUMEN

To understand the physical phase structural variation and activation pathway of the active component during the catalytic reduction of pyrite (FeS2)-based catalysts, multiple methods, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and high-temperature in situ XRD, were applied to characterize the catalyst and reaction process. The reaction mechanism was simulated and verified using density functional theory. The results indicated that pyrite-based catalysts promote the CO reduction of SO2 to S through the dynamic transformation of three phases (FeS2, Fe7S8, and FeS), in which S-vacancy formation is the most important step. As the critical temperature for the reaction of FeS2 and CO was initiated at approximately 525 °C, the active component's physical phase structure and activation pathway could be controlled by adjusting the temperature.


Asunto(s)
Hierro , Azufre , Temperatura , Catálisis
20.
Nano Lett ; 23(15): 7135-7142, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37462326

RESUMEN

Spinel-structured ordered-LiNi0.5Mn1.5O4 (o-LNMO) has experienced a resurgence of interest in the context of reducing scarce elements such as cobalt from the lithium-ion batteries. O-LNMO undergoes two two-phase reactions at slow rates. However, it is not known if such phenomenon also applies at fast rates. Herein, we investigate the rate-dependent phase transition behavior of o-LNMO through in operando time-resolved X-ray diffraction. The results indicate that a narrow region of the solid solution reaction exists for charge and discharge at both slow and fast rates. The overall phase transition is highly asymmetric at fast rates. During fast charge, it is a particle-by-particle mechanism resulting from an asynchronized reaction among the particles. During fast discharge, it is likely a core-shell mechanism involving transition from Li0+xNi0.5Mn1.5O4 to Li1+xNi0.5Mn1.5O4 in the outer layer of particles. The Li0.5Ni0.5Mn1.5O4 phase is suppressed during fast discharge and appears only through Li redistribution upon relaxation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA