Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Radiol ; 177: 111599, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38970995

RESUMEN

PURPOSE: This study aims to develop Various Age-size Pediatric Chest Phantoms (VAPC) to evaluate low-dose protocol that approximates clinical conditions achieved by low organ-specific doses and optimal image quality among the challenges of pediatric size variations. METHODS: Three original pediatric data aged 1, 4, and 7 years were used as a reference for developing VAPC phantoms. Six protocols, namely standard dose (STD) and low dose (low mA and low kV) reconstructed using Filtered Back Projection (FBP) and iterative reconstruction (IR) algorithms, were investigated. This study directly measured the lungs, heart, and spinal cord dose using LD-V1 film. Linearity, Modulation Transfer Function (MTF), Contrast to Noise Ratio (CNR), and Noise Power Spectrum (NPS) were evaluated to assess the CT image quality of the VAPC phantom. RESULTS: This study found that the mean organ-specific dose was higher than CTDIvol. A Comparison of mean lung doses showed VAPC phantom 1 (y.o.) received 74.8% and 137.2% more doses than 4 (y.o.) and 7 (y.o.), respectively. Low kV produces a lower organ dose than low mA. The linearity of CT numbers is not biased at low doses. Differences in age measures significantly influenced organ-specific dose, MTF, CNR, and NPS. CONCLUSION: Smaller pediatrics are still exposed to higher doses at low-dose examinations, whereas larger pediatrics have lower contrast resolution and increased image noise. CT number linearity is unbiased. The combination of low kV with FBP produces higher spatial resolution, while low mA with IR effectively reduces noise to detect low-contrast objects better.


Asunto(s)
Fantasmas de Imagen , Dosis de Radiación , Radiografía Torácica , Tomografía Computarizada por Rayos X , Humanos , Niño , Preescolar , Radiografía Torácica/métodos , Tomografía Computarizada por Rayos X/métodos , Lactante , Masculino , Femenino , Algoritmos , Pulmón/diagnóstico por imagen
2.
Radiography (Lond) ; 30(3): 882-888, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38603991

RESUMEN

INTRODUCTION: The presence of two modes of three-dimensional rotational angiography (3DRA), both intended for cranial applications with similar protocol names ('cerebral' and 'head limited' with no explanation on what the phrase 'limited' represent), had caused some degree of difficulty with the clinicians and radiographers on deciding which mode to select for which task. This study was aimed to use an in-house phantom to assist with this clinical issue of 3DRA usage in terms of mode selection. METHODS: An in-house phantom was used in this study to further analyze and recommend selection. A variety of iodinated contrast agent (ICA) concentrations in the objects were used to simulate clinical images of cranial vessels. The Kerma-area product (KAP) was used as dose metric, while the signal difference to noise ratio (SDNR) of the artificial vessels was employed to represent image quality in terms of contrast. The x-ray spectrum analysis was performed for quantitative evaluation. RESULTS: The non-standard 'head limited' mode is more suggestible for use. Additionally, the 'low' detail option provides the lowest KAP (due to low tube loading) but provided slightly higher SDNR compared to those from 'normal' detail option. A minimum concentration of 18.5 mg/ml of iodine is required to obtain the comparable SDNR with those of higher concentration when the 'low' detail option is selected. CONCLUSION: The 'head limited' mode with 'low' detail options is advisable for contrast-enhanced procedures. To ensure proper use of each mode, effective collaboration should be established between clinical users, medical physicists, and manufacturer's technical representatives. IMPLICATIONS FOR PRACTICE: Selection modes for 3DRA procedures have been made less subjective, following dose and image quality of each mode. Future issues can be addressed by collaborating with medical physicists.


Asunto(s)
Medios de Contraste , Imagenología Tridimensional , Fantasmas de Imagen , Humanos , Imagenología Tridimensional/métodos , Angiografía Cerebral/métodos , Angiografía Cerebral/instrumentación , Relación Señal-Ruido , Dosis de Radiación
3.
Rep Pract Oncol Radiother ; 27(2): 360-370, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299381

RESUMEN

Background: This study aimed to evaluate the target volume and dose accuracy in intrafraction cases using 4-dimensional imaging modalities and an in-house dynamic thorax phantom. Intrafraction motion can create errors in the definition of target volumes, which can significantly affect the accuracy of radiation delivery. Motion management using 4-dimensional modalities is required to reduce the risk. Materials and methods: Two variations in both breathing amplitude and target size were applied in this study. From these variations, internal target volume (ITVs) contoured in 10 phases of 4D-CT (ITV10), average intensity projection (AIP), and mid-ventilation (Mid-V) images were reconstructed from all 4D-CT datasets as reference images. Free-breathing (FB), augmentation free-breathing (Aug-FB), and static images were also acquired using the 3D-CT protocol for comparisons. In dose evaluations, the 4D-CBCT modality was applied before irradiation to obtain position correction. Then, the dose was evaluated with Gafchromic film EBT3. Results: The ITV10, AIP, and Mid-V provide GTVs that match the static GTV. The AIP and Mid-V reference images allowed reductions in ITVs and PTVs without reducing the range of target movement areas compared to FB and Aug-FB images with varying percentages in the range of 29.17% to 48.70%. In the dose evaluation, the largest discrepancies between the measured and planned doses were 10.39% for the FB images and 9.21% for the Aug-FB images. Conclusion: The 4D-CT modality can enable accurate definition of the target volume and reduce the PTV. Furthermore, 4D-CBCT provides localization images during registration to facilitate position correction and accurate dose delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA