Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 156: 113948, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36411633

RESUMEN

Novel pyrazolo[3,4-d] pyrimidine derivatives bearing carbon-aryl(heteryl)idene moieties were synthesized via a condensation reaction of 5-aminopyrazoles and cyclic lactams. The preparation of the target compounds employed bioisosterism, where a pyrazole ring was a major replacement. Fifteen target compounds were investigated for their antiproliferative activity on five human cancer cell lines; derivative (E)- 1-methyl-9-(3,4,5-trimethoxybenzylidene)- 6,7,8,9-tetrahydropyrazolo[3,4-d]pyrido[1,2-a]pyrimidin-4(1H)-one (10k) showed the highest activity (IC50 value (0.03-1.6 µM), on selected cell lines. Results of an in vivo experiment on an HT-29 xenograft nude mouse model also confirmed that 10k inhibited tumor growth. The proposed anticancer mechanism of 10k in HT-29 and HCT-116 cells was that 10k caused G2/M phase arrest in cancer cells and decreased the mitochondrial membrane potential (Δψmt). Additional studies were conducted on HUVEC, where 10k significantly inhibited HUVEC cell migration, adhesion, and tube formation activity. Molecular modeling studies revealed that 10k forms hydrogen bonds with cys-919 of vascular endothelial growth factor receptor 2 (VEGFR-2) and inhibit VEGFR-2 kinase activity. Moreover, tubulin polymerization assay results showed that 10k formed hydrogen bonds with Asn-101 and Gln-11 of tubulin. Furthermore, it could change the aberration of microtubule arrangements in HUVEC and inhibit tubulin polymerization. These results indicate that the main anticancer activity of 10k may be mediated by anti-vascular effects and inhibition of tubulin polymerization in pre-clinical trials.


Asunto(s)
Antineoplásicos , Pirimidinas , Ratones , Animales , Humanos , Pirimidinas/farmacología , Pirimidinas/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Tubulina (Proteína)/metabolismo , Factor A de Crecimiento Endotelial Vascular , Relación Estructura-Actividad , Antineoplásicos/uso terapéutico
2.
AAPS PharmSciTech ; 22(5): 165, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34046797

RESUMEN

In the present study, different in situ hydrogel formulations of docetaxel (DTX) based on biocompatible polymers such as Hyaluronic Acid (HA), poloxamer-407, chitosan and gellan gum were formulated to increase its therapeutic efficacy and reduce toxicity. DTX was loaded in nanovesicles (20 mg/mL equivalent to commercial strength) and further incorporated into the hydrogel bases to possess a dual rationale of protection against burst release and enhanced solubility of the drug. The optimized hydrogel formulation (NV-TPGS-3-GG-4) showed ideal rheological behavior and in situ characteristics at 37±0.5°C with sustained release of more than 144 h. The optimized formulation had instant in vitro gelation (2.8±0.3 min) with good injectability in comparison to the conventional commercial DTX injectable formulation having instant release (<2 h). Additionally, developed formulation exhibited an improved biodisponibility (25.1±0.2 h) in comparison to the commercially available formulation (1.7±0.1 h). The Solid Tumor Carcinoma model in Swiss albino mice revealed that the optimized formulation (based on gellan gum) showed better tumor reduction (85.7±1.2%) and lower toxicity as compared to the commercial formulation (77.3±1.3%). Pharmacokinetic and biodistribution studies demonstrated 3 to 4 times higher localization of drug in tumors. Our findings suggested that injectable gellan gum-based in situ hydrogel formulation can be an effective delivery system for DTX with enhanced solubility, reduced toxicity, and better targeting to the tumors for improved therapeutics.Graphical abstract.


Asunto(s)
Antineoplásicos/administración & dosificación , Docetaxel/administración & dosificación , Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/métodos , Nanocápsulas/administración & dosificación , Polisacáridos Bacterianos/administración & dosificación , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Línea Celular Tumoral , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/metabolismo , Docetaxel/química , Docetaxel/metabolismo , Femenino , Hidrogeles/administración & dosificación , Hidrogeles/química , Hidrogeles/metabolismo , Ratones , Nanocápsulas/química , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/metabolismo , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
3.
Int J Biol Macromol ; 148: 129-139, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31935408

RESUMEN

In spite of extensive usage of Laetiporus sulphureus (sulphur polypore) in traditional European and Asian ethno-medicine for centuries, its anticancer therapeutic potential and toxicity profile remained explored in animal models. Herein, using zebrafish (Danio rerio), as a preclinical animal model, we demonstrated that L. sulphureus lectin (LSL) and ethanol extract (LSE) are non-toxic at high doses up to 400-500 µg/mL, while they effectively inhibited angiogenesis and cancer development at much lower doses. Lectin showed 74-fold higher anti-angiogenic potency than the extract, and even 378-fold higher therapeutic potential than sunitinib-malate, cardiotoxic and myelosupressive anti-angiogenic drug of clinical relevance. Using wound healing and MTT assays, we proved LSL's strong antimigratory effect and selective endothelial cytotoxicity in relation to lung fibroblasts. In addition, employing the zebrafish xenograft models, we demonstrated that LSL almost completely reduced growth, neovascularization and metastasis of human colorectal carcinoma and mouse melanoma. Even more, LSL exerted 8-fold higher potency towards colorectal carcinoma than melanoma, showing markedly higher activity than cisplatin, while LSE failed to express any anticancer activity. Accompanied with non-toxic response, including neutropenia and inflammation, the results of this study strongly imply that LSL could be used as safe adjuvant in chemotherapy against colorectal carcinoma and melanoma.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Lectinas/farmacología , Melanoma/tratamiento farmacológico , Polyporales/química , Animales , Línea Celular Tumoral , Cisplatino/farmacología , Neoplasias Colorrectales/patología , Humanos , Melanoma/patología , Ratones , Neovascularización Patológica/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra
4.
Int J Pharm ; 570: 118683, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31513869

RESUMEN

The objective of this study was to formulate an anticancer preclinical lead, IIIM-290, loaded in solid dispersions to enhance its solubility, dissolution, and oral pharmacokinetics. IIIM-290 is an in-house preclinical anticancer lead prepared by semisynthetic modification of the natural product rohitukine. It is an orally bioavailable Cdk inhibitor showing efficacy in xenograft models of pancreatic, colon and leukemia cancer. It demonstrated in vivo efficacy at a relatively higher dose owing to its poor aqueous solubility (~8.6 µg/mL). Binary and ternary solid dispersions containing PVP K-30, xanthan gum, and PEG-PPG-PEG were selected after solubility screening of various hydrophilic polymers. Several formulations with varying ratios of polymers, alone and in combination, were prepared and investigated for their effects on the solubility enhancement of IIIM-290. The binary solid dispersion VKB-SD75, prepared with PVP K-30 at the ratio of 1:4 w/w, was identified as the optimized composition that displayed 17-fold improvement in the aqueous solubility of IIIM-290. VKB-SD75 was scaled up to a 100-g scale. IIIM-290 and VKB-SD75 were evaluated for DSC, p-XRD, FTIR, 1H NMR, SEM, in vitro dissolution, and oral pharmacokinetics, as well as for in vivo anticancer activity in the Ehrlich solid tumor model. The oral administration of VKB-SD75 in BALB/c mice resulted in a 1.9-fold improvement in plasma exposure. These findings also correlated well when the formulation was administered to mice in the Ehrlich solid tumor model. The newly developed solid dispersion is expected to reduce the dose of IIIM-290 by ~40-50% in preclinical and clinical studies.


Asunto(s)
Antineoplásicos/química , Administración Oral , Animales , Antineoplásicos/metabolismo , Disponibilidad Biológica , Rastreo Diferencial de Calorimetría/métodos , Química Farmacéutica/métodos , Portadores de Fármacos/química , Evaluación Preclínica de Medicamentos/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Ratones , Ratones Endogámicos BALB C , Polietilenglicoles/química , Polímeros/química , Glicoles de Propileno/química , Solubilidad/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier/métodos
5.
ACS Med Chem Lett ; 8(10): 1116-1121, 2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-29057061

RESUMEN

Inhibition of mutant IDH1 is being evaluated clinically as a promising treatment option for various cancers with hotspot mutation at Arg132. Having identified an allosteric, induced pocket of IDH1R132H, we have explored 3-pyrimidin-4-yl-oxazolidin-2-ones as mutant IDH1 inhibitors for in vivo modulation of 2-HG production and potential brain penetration. We report here optimization efforts toward the identification of clinical candidate IDH305 (13), a potent and selective mutant IDH1 inhibitor that has demonstrated brain exposure in rodents. Preclinical characterization of this compound exhibited in vivo correlation of 2-HG reduction and efficacy in a patient-derived IDH1 mutant xenograft tumor model. IDH305 (13) has progressed into human clinical trials for the treatment of cancers with IDH1 mutation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA