Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Acta Pharmacol Sin ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223366

RESUMEN

Inhibin beta A (INHBA) and its homodimer activin A have pleiotropic effects on modulation of immune responses and tumor progression, but it remains uncertain whether tumors may release activin A to regulate anti-tumor immunity. In this study we investigated the effects and mechanisms of tumor intrinsic INHBA on carcinogenesis, tumor immunity and PD-L1 blockade. Bioinformatic analysis on the TCGA database revealed that INHBA expression levels were elevated in 33 cancer types, including breast cancer (BRCA) and colon adenocarcinoma (COAD). In addition, survival analysis also corroborated that INHBA expression was negatively correlated with the prognosis of many types of cancer patients. We demonstrated that gain or loss function of Inhba did not alter in vitro growth of colorectal cancer CT26 cells, but had striking impact on mouse tumor models including CT26, MC38, B16 and 4T1 models. By using the TIMER 2.0 tool, we figured out that in most cancer types, Inhba expression in tumors was inversely associated with the infiltration of CD4+ T and CD8+ T cells. In CT26 tumor-bearing mice, overexpression of tumor INHBA eliminated the anti-tumor effect of the PD-L1 antibody atezolizumab, whereas INHBA deficiency enhanced the efficacy of atezolizumab. We revealed that tumor INHBA significantly downregulated the interferon-γ (IFN-γ) signaling pathway. Tumor INHBA overexpression led to lower expression of PD-L1 induced by IFN-γ, resulting in poor responsiveness to anti-PD-L1 treatment. On the other hand, decreased secretion of IFN-γ-stimulated chemokines, including C-X-C motif chemokine 9 (CXCL9) and 10 (CXCL10), impaired the infiltration of effector T cells into the tumor microenvironment (TME). Furthermore, the activin A-specific antibody garetosmab improved anti-tumor immunity and its combination with the anti-PD-L1 antibody atezolizumab showed a superior therapeutic effect to monotherapy with garetosmab or atezolizumab. We demonstrate that INHBA and activin A are involved in anti-tumor immunity by inhibiting the IFN-γ signaling pathway, which can be considered as potential targets to improve the responsive rate of PD-1/PD-L1 blockade.

2.
Development ; 151(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38934417

RESUMEN

Spermatogonial stem cells (SSCs) undergo self-renewal division to sustain spermatogenesis. Although it is possible to derive SSC cultures in most mouse strains, SSCs from a 129 background never proliferate under the same culture conditions, suggesting they have distinct self-renewal requirements. Here, we established long-term culture conditions for SSCs from mice of the 129 background (129 mice). An analysis of 129 testes showed significant reduction of GDNF and CXCL12, whereas FGF2, INHBA and INHBB were higher than in testes of C57BL/6 mice. An analysis of undifferentiated spermatogonia in 129 mice showed higher expression of Chrna4, which encodes an acetylcholine (Ach) receptor component. By supplementing medium with INHBA and Ach, SSC cultures were derived from 129 mice. Following lentivirus transduction for marking donor cells, transplanted cells re-initiated spermatogenesis in infertile mouse testes and produced transgenic offspring. These results suggest that the requirements of SSC self-renewal in mice are diverse, which has important implications for understanding self-renewal mechanisms in various animal species.


Asunto(s)
Ratones Endogámicos C57BL , Espermatogénesis , Espermatogonias , Testículo , Animales , Masculino , Ratones , Espermatogonias/citología , Espermatogonias/metabolismo , Espermatogénesis/genética , Espermatogénesis/fisiología , Testículo/metabolismo , Testículo/citología , Autorrenovación de las Células , Células Madre Germinales Adultas/metabolismo , Células Madre Germinales Adultas/citología , Células Cultivadas , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Ratones Endogámicos , Diferenciación Celular , Proliferación Celular , Células Madre/citología , Células Madre/metabolismo , Ratones Transgénicos
3.
Int J Biol Macromol ; 270(Pt 1): 132239, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735606

RESUMEN

Colorectal cancer (CRC) is a major worldwide health issue, with high rates of both occurrence and mortality. Dysregulation of the transforming growth factor-beta (TGF-ß) signaling pathway is recognized as a pivotal factor in CRC pathogenesis. Notably, the INHBA gene and long non-coding RNAs (lncRNAs) have emerged as key contributors to CRC progression. The aim of this research is to explore the immunological roles of INHBA and PELATON in CRC through a combination of computational predictions and experimental validations, with the goal of enhancing diagnostic and therapeutic strategies. In this study, we utilized bioinformatics analyses, which involved examining differential gene expression (DEG) in the TCGA-COAD dataset and exploring the INHBA gene in relation to the TGF-ß pathway. Additionally, we analyzed mutations of INHBA, evaluated the microenvironment and tumor purity, investigated the INHBA's connection to immune checkpoint inhibitors, and measured its potential as an immunotherapy target using the TIDE score. Utilizing bioinformatics analyses of the TCGA-COAD dataset beside experimental methodologies such as RT-qPCR, our investigation revealed significant upregulation of INHBA in CRC. As results, our analysis of the protein-protein interaction network associated with INHBA showed 10 interacting proteins that play a role in CRC-associated processes. We observed a notable prevalence of mutations within INHBA and explored its correlation with the response to immune checkpoint inhibitors. Our study highlights INHBA as a promising target for immunotherapy in CRC. Moreover, our study identified PELATON as a closely correlated lncRNA with INHBA, with experimental validation confirming their concurrent upregulation in CRC tissues. Thus, these findings highlight the importance of INHBA and PELATON in driving CRC progression, suggesting their potential utility as diagnostic and prognostic biomarkers. By integrating computational predictions with experimental validations, this research enhances our understanding of CRC pathogenesis and uncovers prospects for personalized therapeutic interventions.


Asunto(s)
Neoplasias Colorrectales , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Subunidades beta de Inhibinas , Mapas de Interacción de Proteínas , Transducción de Señal , Factor de Crecimiento Transformador beta , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Humanos , Biología Computacional/métodos , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Mapas de Interacción de Proteínas/genética , Subunidades beta de Inhibinas/genética , Subunidades beta de Inhibinas/metabolismo , ARN Largo no Codificante/genética , Microambiente Tumoral/genética , Mutación , Biomarcadores de Tumor/genética
4.
Inflamm Regen ; 44(1): 23, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720352

RESUMEN

BACKGROUND: Cancer tissues contain a wide variety of immune cells that play critical roles in suppressing or promoting tumor progression. Macrophages are one of the most predominant populations in the tumor microenvironment and are composed of two classes: infiltrating macrophages from the bone marrow and tissue-resident macrophages (TRMs). This review aimed to outline the function of TRMs in the tumor microenvironment, focusing on lung cancer. REVIEW: Although the functions of infiltrating macrophages and tumor-associated macrophages have been intensively analyzed, a comprehensive understanding of TRM function in cancer is relatively insufficient because it differs depending on the tissue and organ. Alveolar macrophages (AMs), one of the most important TRMs in the lungs, are replenished in situ, independent of hematopoietic stem cells in the bone marrow, and are abundant in lung cancer tissue. Recently, we reported that AMs support cancer cell proliferation and contribute to unfavorable outcomes. CONCLUSION: In this review, we introduce the functions of AMs in lung cancer and their underlying molecular mechanisms. A thorough understanding of the functions of AMs in lung cancer will lead to improved treatment outcomes.

5.
Cancer Sci ; 115(7): 2301-2317, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38676428

RESUMEN

GLI1, a key transcription factor of the Hedgehog (Hh) signaling pathway, plays an important role in the development of cancer. However, the function and mechanisms by which GLI1 regulates gene transcription are not fully understood in gastric cancer (GC). Here, we found that GLI1 induced the proliferation and metastasis of GC cells, accompanied by transcriptional upregulation of INHBA. This increased INHBA expression exerted a promoting activity on Smads signaling and then transcriptionally activated GLI1 expression. Notably, our results demonstrate that disrupting the interaction between GLI1 and INHBA could inhibit GC tumorigenesis in vivo. More intriguingly, we confirmed the N6-methyladenosine (m6A) activation mechanism of the Helicobacter pylori/FTO/YTHDF2/GLI1 pathway in GC cells. In conclusion, our study confirmed that the GLI1/INHBA positive feedback loop influences GC progression and revealed the mechanism by which H. pylori upregulates GLI1 expression through m6A modification. This positive GLI1/INHBA feedback loop suggests a novel noncanonical mechanism of GLI1 activity in GC and provides potential therapeutic targets for GC treatment.


Asunto(s)
Proliferación Celular , Progresión de la Enfermedad , Retroalimentación Fisiológica , Regulación Neoplásica de la Expresión Génica , Helicobacter pylori , Neoplasias Gástricas , Proteína con Dedos de Zinc GLI1 , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Humanos , Animales , Línea Celular Tumoral , Ratones , Transducción de Señal , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Regulación hacia Arriba , Masculino , Carcinogénesis/genética
6.
Int J Biochem Cell Biol ; 171: 106570, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588888

RESUMEN

Colon cancer has become a global public health challenge, and 5-Fluorouracil (5-FU) chemoresistance is a major obstacle in its treatment. Chemoresistance can be mediated by therapy-induced cellular senescence. This study intended to investigate mechanisms of INHBA (inhibin A) in 5-FU resistance mediated by cellular senescence in colon cancer. Bioinformatics analysis of INHBA expression in colon cancer tissues, survival analysis, and correlation analysis of cellular senescence markers were performed. The effects of INHBA on the biological characteristics and 5-FU resistance of colon cancer cells were examined through loss/gain-of-function and molecular assays. Finally, a xenograft mouse model was built to validate the mechanism of INHBA in vivo. INHBA was upregulated in colon cancer and was significantly positively correlated with cellular senescence markers uncoupling protein 2 (UCP-2), matrix metalloproteinase-1 (MMP-1), dense and erect panicle 1 (DEP1), and p21. Cellular senescence in colon cancer mediated 5-FU resistance. Downregulation of INHBA expression enhanced 5-FU sensitivity in colon cancer cells, inhibited cell proliferation, promoted apoptosis, increased the proportion of cells in G0/G1 phase, and it resulted in a lower proportion of senescent cells and lower levels of the cellular senescence markers interleukin 6 (IL-6) and interleukin 8 (IL-8). Analysis of whether to use the pathway inhibitor Verteporfin proved that INHBA facilitated colon cancer cell senescence and enhanced 5-FU chemoresistance via inactivation of Hippo signaling pathway, and consistent results were obtained in vivo. Collectively, INHBA conferred 5-FU chemoresistance mediated by cellular senescence in colon cancer cells through negative regulation of Hippo signaling.


Asunto(s)
Senescencia Celular , Neoplasias del Colon , Resistencia a Antineoplásicos , Fluorouracilo , Vía de Señalización Hippo , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Fluorouracilo/farmacología , Humanos , Senescencia Celular/efectos de los fármacos , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Animales , Ratones , Transducción de Señal/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones Desnudos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos BALB C , Apoptosis/efectos de los fármacos , Masculino
7.
Genome Med ; 16(1): 60, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658971

RESUMEN

BACKGROUND: Pituitary neuroendocrine tumors (PitNETs) are common gland neoplasms demonstrating distinctive transcription factors. Although the role of immune cells in PitNETs has been widely recognized, the precise immunological environment and its control over tumor cells are poorly understood. METHODS: The heterogeneity, spatial distribution, and clinical significance of macrophages in PitNETs were analyzed using single-cell RNA sequencing (scRNA-seq), bulk RNA-seq, spatial transcriptomics, immunohistochemistry, and multiplexed quantitative immunofluorescence (QIF). Cell viability, cell apoptosis assays, and in vivo subcutaneous xenograft experiments have confirmed that INHBA-ACVR1B influences the process of tumor cell apoptosis. RESULTS: The present study evaluated scRNA-seq data from 23 PitNET samples categorized into 3 primary lineages. The objective was to explore the diversity of tumors and the composition of immune cells across these lineages. Analyzed data from scRNA-seq and 365 bulk RNA sequencing samples conducted in-house revealed the presence of three unique subtypes of tumor immune microenvironment (TIME) in PitNETs. These subtypes were characterized by varying levels of immune infiltration, ranging from low to intermediate to high. In addition, the NR5A1 lineage is primarily associated with the subtype characterized by limited infiltration of immune cells. Tumor-associated macrophages (TAMs) expressing CX3CR1+, C1Q+, and GPNMB+ showed enhanced contact with tumor cells expressing NR5A1 + , TBX19+, and POU1F1+, respectively. This emphasizes the distinct interaction axes between TAMs and tumor cells based on their lineage. Moreover, the connection between CX3CR1+ macrophages and tumor cells via INHBA-ACVR1B regulates tumor cell apoptosis. CONCLUSIONS: In summary, the different subtypes of TIME and the interaction between TAM and tumor cells offer valuable insights into the control of TIME that affects the development of PitNET. These findings can be utilized as prospective targets for therapeutic interventions.


Asunto(s)
Macrófagos , Tumores Neuroendocrinos , Neoplasias Hipofisarias , Análisis de la Célula Individual , Transcriptoma , Microambiente Tumoral , Humanos , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/inmunología , Tumores Neuroendocrinos/metabolismo , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/inmunología , Neoplasias Hipofisarias/patología , Neoplasias Hipofisarias/metabolismo , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica , Fenotipo , Apoptosis/genética , Linaje de la Célula/genética
8.
J Oral Pathol Med ; 53(4): 266-274, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531807

RESUMEN

BACKGROUND: Inhibin A and N6-methyladenosine methylation modifications participate in oral squamous cell carcinoma development. However, the N6-methyladenosine modification of Inhibin A in oral squamous cell carcinoma has not been revealed. This study reveals a key gene "Inhibin A" that may affect the tumorigenesis of oral squamous cell carcinoma and its molecular mechanisms on N6-methyladenosine methyltransferase KIAA1429-mediated N6-methyladenosine methylation modification. METHODS: Bioinformatics analysis and quantitative real-time polymerase chain reaction identified the potential regulatory genes in oral squamous cell carcinoma. We examined the changes in the proliferation (Cell Counting Kit-8 assay), migration (transwell migration assay), and invasion (transwell invasion assays) of oral squamous cell carcinoma cells. We performed a xenograft tumor experiment to validate the role of Inhibin A in oral squamous cell carcinoma in vivo. The interactions between Inhibin A and KIAA1429 were analyzed using bioinformatics, methylated RNA immunoprecipitation-qPCR, quantitative real-time polymerase chain reaction, and Western blotting experiments. RESULTS: Inhibin A had the highest expression in patients with oral squamous cell carcinoma. Inhibin A silencing impaired the ability of oral squamous cell carcinoma cells to proliferate, migrate, and invade, as well as limited the tumorous growth of oral squamous cell carcinoma cells in vivo. Bioinformatics analysis showed that Inhibin A expression positively interacted with KIAA1429 expression in The Cancer Genome Atlas database. The levels were also upregulated in our clinical samples. Furthermore, KIAA1429 silencing repressed the N6-methyladenosine level of Inhibin A in oral squamous cell carcinoma. CONCLUSIONS: Inhibin A promotes the tumorigenesis of oral squamous cell carcinoma by KIAA1429-mediated N6-methyladenosine modification. This study adds to our current knowledge of the molecular mechanisms underlying oral squamous cell carcinoma malignancy.


Asunto(s)
Adenina , Carcinoma de Células Escamosas , Inhibinas , Neoplasias de la Boca , Humanos , Carcinogénesis/genética , Carcinoma de Células Escamosas/genética , Transformación Celular Neoplásica , Neoplasias de Cabeza y Cuello , Inhibinas/metabolismo , Neoplasias de la Boca/genética , Carcinoma de Células Escamosas de Cabeza y Cuello
9.
Cell Mol Life Sci ; 81(1): 50, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252148

RESUMEN

Pancreatic neuroendocrine neoplasms (PanNENs) are a group of highly heterogeneous neoplasms originating from the endocrine islet cells of the pancreas with characteristic neuroendocrine differentiation, more than 60% of which represent metastases when diagnosis, causing major tumor-related death. Metabolic alterations have been recognized as one of the hallmarks of tumor metastasis, providing attractive therapeutic targets. However, little is known about the molecular mechanism of metabolic changes regulating PanNEN progression. In this study, we first identified methylmalonic acid (MMA) as an oncometabolite for PanNEN progression, based on serum metabolomics of metastatic PanNEN compared with non-metastatic PanNEN patients. One of the key findings was the potentially novel mechanism of epithelial-mesenchymal transition (EMT) triggered by MMA. Inhibin ßA (INHBA) was characterized as a key regulator of MMA-induced PanNEN progression according to transcriptomic analysis, which has been validated in vitro and in vivo. Mechanistically, INHBA was activated by FOXA2, a neuroendocrine (NE) specific transcription factor, which was initiated during MMA-induced progression. In addition, MMA-induced INHBA upregulation activated downstream MITF to regulate EMT-related genes in PanNEN cells. Collectively, these data suggest that activation of INHBA via FOXA2 promotes MITF-mediated EMT during MMA inducing PanNEN progression, which puts forward a novel therapeutic target for PanNENs.


Asunto(s)
Factor Nuclear 3-beta del Hepatocito , Subunidades beta de Inhibinas , Ácido Metilmalónico , Neoplasias Pancreáticas , Humanos , Factor Nuclear 3-beta del Hepatocito/genética , Subunidades beta de Inhibinas/genética , Páncreas , Neoplasias Pancreáticas/genética , Activación Transcripcional
10.
Front Biosci (Landmark Ed) ; 28(11): 301, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38062804

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the third most common cancer and one of the leading causes of death worldwide. Seriously threatens human life and health. Previous studies have identified that inhibin ßA (INHBA) could induce tumorgenesis and progression of CRC through the regulation of the TGF-ß/Smad signal axis. The abnormal expression of INHBA is related to the poor prognosis of patients. The aim of this study was to identify the molecular mechanism of HNF1A-AS1 and miR-214 regulating INHBA and carcinogenesis through bioinformatics combined with experiments. METHODS: The expression of HNF1A-AS1, miRNA-214-5p, INHBA in pan-cancer and CRC were investigated in the Cancer Genome Atlas (TCGA). The correlation between HNF1A-AS1 and immune-related genes or miRNAs was explored via the Gene Expression Profiling Interactive Analysis (GEPIA) and volcano plots, respectively. The association between HNF1A-AS1 and differentially expressed miRNAs was constructed by TargetScan. The miRDB, miRWalk, and TargetScan databases were utilized to predict the target genes of hsa-miR-214. The expression of INHBA in tissues and cell lines of CRC was examined by RT-qPCR and western blot assay. RESULTS: The INHBA and HNF1A-AS1 expressions were increased in Colon adenocarcinoma (COAD) and Rectum adenocarcinoma (READ) of the TCGA database. Hsa-miR-214 was relatively less expressed in CRC tissues compared with para-cancer tissues. The expression of HNF1A-AS1 was negatively correlated with hsa-miR-214. INHBA was one of the target genes of hsa-miR-214 based on miRDB, miRWalk, and TargetScan databases. The specific binding sites of INHBA-3'UTR and miR-214-5p were identified by starBase. The expression level of INHBA was positively correlated with the T stage of tumor and negatively correlated with overall survival (OS) and disease-free survival (DFS) in CRC patients. The results of RT-qPCR and western blot indicated that the expression of INHBA in tissues and cell lines in CRC was higher than those in para-carcinoma tissues and normal colon cell lines, respectively. CONCLUSIONS: These findings suggested that HNF1A-AS1 and miRNA-214-5p were key upstream non-coding RNAs of INHBA. The HNF1A-AS1/miR-214/INHBA signal axis plays a significant role in the tumorgenesis and progression of CRC. By interfering with HNF1A-AS1 and INHBA genes on HT29 and SW480 cells, it was found that HNF1A-AS1 and INHBA genes may be important target genes in CRC.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Humanos , Adenocarcinoma/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
11.
J Orthop Surg Res ; 18(1): 848, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940978

RESUMEN

BACKGROUND: Osteosarcoma (OS) is a refractory malignancy. This study aimed to explore the roles and mechanisms of Inhibin subunit beta A (INHBA) in OS. METHODS: INHBA expression levels in OS tissues and cells were assessed using RT-qPCR and western blotting. The impact of INHBA silencing on OS development was then explored by transfecting the OS cell lines U2OS and MG63 with INHBA-small interfering RNA (siRNA). The influence of INHBA silencing on U2OS and MG63 cell proliferation, migration, and invasion was examined using MTT and Transwell assays. Epithelial-mesenchymal transition (EMT) markers (E-cadherin and N-cadherin) were analyzed by RT-qPCR. The expression of genes involved in cell proliferation, migration, invasion, and the TGF-ß signaling pathway was evaluated by western blotting and RT-qPCR. RESULTS: INHBA levels were elevated in the OS tissues and cells. Furthermore, the transforming growth factor-ß (TGF-ß) signaling pathway of OS cells was suppressed in response to INHBA-siRNA, whereas proliferation, migration, and invasion of OS cells were inhibited. Besides, INHBA-siRNA significantly inhibited OS cell EMT, evidenced by enhanced E-cadherin mRNA expression and reduced N-cadherin mRNA expression. Further mechanistic studies revealed that the TGF-ß1 agonist SRI-011381 hydrochloride increased OS cell proliferation, migration, and invasion after INHBA downregulation. CONCLUSION: We found that INHBA silencing could play a vital role in OS via TGF-ß1-regulated proliferation, migration, and invasion.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Transducción de Señal/genética , Silenciador del Gen , Osteosarcoma/patología , ARN Interferente Pequeño/genética , Cadherinas/genética , Cadherinas/metabolismo , Proliferación Celular/genética , Neoplasias Óseas/genética , ARN Mensajero , Movimiento Celular/genética , Línea Celular Tumoral
12.
Mol Cancer ; 22(1): 146, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667354

RESUMEN

Multidrug resistance renders treatment failure in a large proportion of head and neck squamous cell carcinoma (HNSCC) patients that require multimodal therapy involving chemotherapy in conjunction with surgery and/or radiotherapy. Molecular events conferring chemoresistance remain unclear. Through transcriptome datamining, 28 genes were subjected to pharmacological and siRNA rescue functional assays on 12 strains of chemoresistant cell lines each against cisplatin, 5-fluorouracil (5FU), paclitaxel (PTX) and docetaxel (DTX). Ten multidrug chemoresistance genes (TOP2A, DNMT1, INHBA, CXCL8, NEK2, FOXO6, VIM, FOXM1B, NR3C1 and BIRC5) were identified. Of these, four genes (TOP2A, DNMT1, INHBA and NEK2) were upregulated in an HNSCC patient cohort (n = 221). Silencing NEK2 abrogated chemoresistance in all drug-resistant cell strains. INHBA and TOP2A were found to confer chemoresistance in majority of the drug-resistant cell strains whereas DNMT1 showed heterogeneous results. Pan-cancer Kaplan-Meier survival analysis on 21 human cancer types revealed significant prognostic values for INHBA and NEK2 in at least 16 cancer types. Drug library screens identified two compounds (Sirodesmin A and Carfilzomib) targeting both INHBA and NEK2 and re-sensitised cisplatin-resistant cells. We have provided the first evidence for NEK2 and INHBA in conferring chemoresistance in HNSCC cells and siRNA gene silencing of either gene abrogated multidrug chemoresistance. The two existing compounds could be repurposed to counteract cisplatin chemoresistance in HNSCC. This finding may lead to novel personalised biomarker-linked therapeutics that can prevent and/or abrogate chemoresistance in HNSCC and other tumour types with elevated NEK2 and INHBA expression. Further investigation is necessary to delineate their signalling mechanisms in tumour chemoresistance.


Asunto(s)
Cisplatino , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Cisplatino/farmacología , Transducción de Señal , Línea Celular , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Factores de Transcripción Forkhead , Quinasas Relacionadas con NIMA/genética
13.
Exp Hematol Oncol ; 12(1): 75, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644505

RESUMEN

BACKGROUND: The mechanisms underlying the occurrence and development of esophageal squamous cell carcinoma (ESCC) remains to be elucidated. The present study aims to investigate the roles and implications of IGF2BP1 overexpression in ESCC. METHODS: IGF2BP1 protein expression in ESCC samples was assessed by immunohistochemistry (IHC), and the mRNA abundance of IGF2BP1 and INHBA was analyzed with TCGA datasets and by RNA in situ hybridization (RISH). The methylation level of the IGF2BP1 promoter region was detected by methylation-specific PCR (MSP-PCR). Cell viability, migration, invasion and in vivo metastasis assays were performed to explore the roles of IGF2BP1 overexpression in ESCC. RNA immunoprecipitation sequencing (RIP-seq) and mass spectrometry were applied to identify the target RNAs and interacting proteins of IGF2BP1, respectively. RIP-PCR, RNA pulldown, immunofluorescence (IF), gene-specific m6A PCR and RNA stability assays were used to uncover the molecular mechanisms underlying the malignant phenotypes of ESCC cells caused by IGF2BP1 dysregulation. BTYNB, a small molecular inhibitor of IGF2BP1, was evaluated for its inhibitory effect on the malignant phenotypes of ESCC cells. RESULTS: IGF2BP1 overexpression was detected in ESCC tissues and associated with the depth of tumor invasion. In addition, IGF2BP1 mRNA expression in ESCC cells was negatively correlated with the level of its promoter methylation. Knockdown of IGF2BP1 inhibited ESCC cell invasion and migration as well as tumor metastasis. Mechanistically, we observed that IGF2BP1 bound and stabilized INHBA mRNA and then resulted in higher protein expression of INHBA, leading to the activation of Smad2/3 signaling, thus promoting malignant phenotypes. The mRNA level of INHBA was upregulated in ESCC tissues as well. Furthermore, IGF2BP1 interacted with G3BP stress granule assembly factor 1 (G3BP1). Knockdown of G3BP1 also down-regulated the INHBA-Smad2/3 signaling. BTYNB abolished this activated signaling and significantly attenuated the malignant phenotypes of ESCC cells. CONCLUSIONS: Elevated expression of IGF2BP1 is a frequent event in ESCC tissues and might be a candidate biomarker for the disease. IGF2BP1 overexpression promotes the invasion and migration of ESCC cells by activating the INHBA-Smad2/3 pathway, providing a potential therapeutic target for ESCC patients with high expression of IGF2BP1.

14.
Theriogenology ; 205: 50-62, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37086585

RESUMEN

MicroRNAs (miRNAs) are involved in many physiological processes such as signal transduction, cell proliferation and apoptosis. Many studies have shown that miRNAs can regulate the process of follicular development. Our previous studies found that the expression of miR-29c-5p in buffalo atretic follicles was much higher than that in healthy follicles, suggesting that this miRNA may participate in the process of buffalo follicular atresia. In this study, we aim to explore to the role and molecular mechanisms of miR-29c-5p on the functions of buffalo granulosa cells (GCs). GCs cultured in vitro were transfected with miR-29c-5p mimics and its inhibitor, respectively, and it was found that the mimics significantly increased the apoptotic rate of GCs. They also inhibited the proliferation of GCs and the secretion of steroid hormones. The effect of the inhibitor was opposite to that of the mimics. MiR-29c-5p was subsequently shown to target the inhibin subunit beta A, (INHBA). Overexpression of INHBA could promote the production of activin A and inhibin A, and then reverse the effect of miR-29c-5p on buffalo GCs. In conclusion, these results suggest that miR-29c-5p promotes apoptosis and inhibits proliferation and steroidogenesis by targeting INHBA in buffalo GCs. This may ultimately promote atresia in buffalo follicles.


Asunto(s)
Búfalos , MicroARNs , Animales , Femenino , Apoptosis/genética , Búfalos/genética , Proliferación Celular , Atresia Folicular/genética , Células de la Granulosa/metabolismo , MicroARNs/metabolismo , Folículo Ovárico
15.
Medicina (Kaunas) ; 59(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36984496

RESUMEN

Background and Objectives: Cervical cancer (CC) is a malignant tumor occurring in the cervical epithelium, which is one of the most common cancer-caused deaths in females. Inhibin ß A (INHBA) is the most widely expressed biomarker of the transforming growth factor-ß (TGF-ß) family in tumor cells, and has predictive value for tumor development and prognosis. In this study, the expression of INHBA in CC tissue was examined to analyze the relationship between INHBA expression and pathological characteristics, anti-tumor immune response and clinical prognosis of CC. In addition, the factors affecting the prognosis of CC patients were explored. Materials and Methods: 84 patients with CC, who underwent surgical resection in our hospital from March 2016 to August 2017, were retrospectively picked. The tumor tissues and normal adjacent tissues of patients with CC were collected, and the expression of INHBA in CC tissues and adjacent tissues was detected using immunohistochemistry (IHC). The relationship between INHBA expression and clinicopathological characteristics of CC patients was analyzed. The relationship between INHBA expression and clinical prognosis was analyzed using the Kaplan-Meier (K-M) survival curve. The levels of anti-tumor immune-response-related factors (interferon-γ (IFN-γ), interleukin-10 (IL-10), tumor necrosis factor- α (TNF-α) and IL-2) were evaluated in patients with negative and positive expressions of INHBA. The patients were followed up for 60 months and were graded as a good prognosis group and poor prognosis group according to whether the patients died or had recurrence and metastasis. Relevant factors affecting the prognosis of the patients were analyzed. Results: INHBA was localized in the cytoplasm of cancer tissues. The positive expression rate in cancer tissues was 67.86%, which was much higher than the 28.57% in normal adjacent tissues (p < 0.05). Expression of INHBA was closely correlated with Federation of Gynecology and Obstetrics (FIGO) staging, differentiation and lymph node metastasis (p < 0.05). Compared with INHBA-negative expression group, the contents of IFN-γ, TNF-α and IL-2 were much lower, while the level of IL-10 was strongly elevated in the INHBA-positive expression group (p < 0.01). Eighty-four patients with CC were followed up for 36 months. The K-M survival curve showed that the patients with a positive expression of INHBA had a significantly shorter survival period than the patients with a negative expression of INHBA (p < 0.05). There were significant differences in FIGO staging, differentiation, lymph node metastasis and INHBA expression between patients with a good prognosis and poor prognosis (p < 0.05). Logistic regression analysis showed that FIGO stage, differentiation degree, lymph node metastasis and INHBA were the factors influencing the poor prognosis of patients with CC (p < 0.05). Conclusion: The abnormally high expression of INHBA in patients with CC was related to the pathological characteristics, anti-tumor immune response and survival time, and leaded to a poor prognosis. It was speculated that INHBA exerted an important reference role in tumor invasion and clinical prognosis evaluation, which could act as a new target for anti-tumor treatment of CC.


Asunto(s)
Subunidades beta de Inhibinas , Neoplasias del Cuello Uterino , Femenino , Humanos , Inmunidad , Interleucina-10 , Interleucina-2 , Ganglios Linfáticos/patología , Metástasis Linfática/patología , Estadificación de Neoplasias , Pronóstico , Estudios Retrospectivos , Factor de Necrosis Tumoral alfa , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/patología , Subunidades beta de Inhibinas/genética
16.
Dig Dis Sci ; 68(3): 791-802, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35624327

RESUMEN

BACKGROUND: Gastric cancer (GC) seriously threatens people's health and life quality worldwide. AIM: The current study sought to explore prognostic immune genes and their regulatory network in GC. METHODS: First, expression data in GC and normal samples were analyzed based on bioinformatics analysis. Immune-related genes were identified and confirmed with univariate/multivariate Cox analysis and receiver-operating characteristic curve. The upstream transcription factors of immune genes were subsequently predicted, and their regulatory network was constructed. GC and adjacent normal tissues were obtained from 76 patients with GC to determine the expression patterns of immune genes and their correlation with overall prognosis. CD8+ T-cell infiltration of patients with high or low risk was detected by means of immunohistochemistry. RESULTS: Bioinformatics analysis highlighted 3689 differentially expressed genes in GC, including 87 immune genes, 8 of which were significantly associated with patient survival. CGB5 and INHBA were high-risk genes, while TRAJ19 was identified as a low-risk gene, all of which were found to be regulated by 11 different transcription factors. Furthermore, CGB5 and INHBA exhibited negative correlation with the prognosis of GC patients; however, TRAJ19 was positively correlated with GC patient prognosis. The incidence of lymph node metastasis was higher, the pathological stage was advanced and the infiltrated CD8+ T cells were fewer in the high-risk GC group. CONCLUSIONS: Overall, our findings identified the key roles of CGB5, INHBA and TRAJ19 in prognosis GC patients, serving as an important gene set for prognostic prediction.


Asunto(s)
Neoplasias Gástricas , Humanos , Linfocitos T CD8-positivos , Biología Computacional , Metástasis Linfática , Pronóstico , Neoplasias Gástricas/genética
17.
Cancer Research and Clinic ; (6): 733-738, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1030364

RESUMEN

Objective:To investigate the expression of INHBA in colorectal cancer and its relationship with microsatellite status and clinicopathological features.Methods:Bioinformatics analysis was conducted based on Gene Expression Omnibus (GEO) database and Gene Expression Profiling Interaction Analysis (GEPIA) database, and the differentially expressed prognosis-related target genes in colorectal cancer were selected. Wax mass tissues of 107 patients with colorectal cancer who underwent surgery from January 2016 to June 2022 in the Third Affiliated Hospital of Jinzhou Medical University were collected, and the tissue microarrays were prepared. The clinicopathological microsatellite status [positive expressions of the mismatch repair (MMR) proteins MLH1, MSH2, MSH6, and PMS2 were mismatch repair proficient (pMMR), which represented low microsatellite instability or microsatellite stabilization; if any of these indexes was negative, it was judged to be mismatch repair deficient (dMMR), which represented high microsatellite instability] and INHBA expression in colorectal cancer tissues were detected by immunohistochemistry, data of the patients were retrospectively analyzed. The relationship between INHBA and microsatellite status as well as clinicopathological features was analyzed.Results:Three data sets of colorectal cancer were selected from GEO database: GSE110223 (13 cancer tissues, 13 paracancerous tissues), GSE110224 (17 cancer tissues, 17 paracancerous tissues), GSE113513 (14 cancer tissues, 14 paracancerous tissues), and the top 50 genes that were differentially up-regulated and down-regulated between cancer tissues and paracancerous tissues were screened. Intersection genes of 3 data sets were analyzed by Venn diagram, and 12 up-regulated genes and 17 down-regulated genes were screened out. According to GEPIA database, AQP8, ZG16 and INHBA genes among the up-regulated and down-regulated differential genes were associated with the prognosis of colorectal cancer. INHBA was higher expressed in colorectal cancer tissues than in paracancerous tissues (≥5 cm from the tumor margin) ( P < 0.05), and INHBA gene was selected for analysis. Immunohistochemical detection of collected colorectal cancer wax samples showed that the proportion of patients with high INHBA expression in colorectal cancer tissues was higher than that in paracancerous tissues [85.05% (91/107) vs. 67.29% (72/107), P < 0.05]. The high expression of INHBA in cancer tissues was related to the lesion site [right colon vs. left colon: 94.00% (47/50) vs. 77.19% (44/57)], maximum tumor diameter [>5 cm vs. ≤5 cm: 92.73% (51/55) vs. 76.92% (40/52)] and the depth of invasion [stage T 3-4 vs. stage T 1-2: 96.43% (54/56) vs. 72.55% (37/51)], differentiation degree [low and medium differentiation vs. high differentiation: 91.04% (61/67) vs. 75.00% (30/40)], lymph node metastasis [yes vs. no: 93.02% (40/43) vs. 78.13% (50/64)] (all P < 0.05), but had no correlation with age, sex, thrombus and nerve invasion (all P > 0.05). The proportion of patients with high expression of INHBA in colorectal cancer tissues in pMMR group was higher than that in dMMR group [93.22% (55/59) vs. 75.00% (36/48), χ2 = 6.91, P = 0.008]. Conclusions:INHBA is highly expressed in colorectal cancer tissues, and the highly expressed INHBA is closely related to clinicopathological features and microsatellite status of colorectal cancer. INBHA may be a new target for diagnosis, treatment and prognosis of colorectal cancer.

18.
Theriogenology ; 197: 198-208, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36525859

RESUMEN

Activin/inhibin is an important factor for the fecundity of Hu sheep, and it is involved in follicular development in ovaries. Inhibin subunit beta A (INHBA) participates in the synthesis of activin A and inhibin A. In this study, we also noted a positive correlation between INHBA level and the secretion of both activin A and inhibin A in culture medium. Nevertheless, both knockdown and overexpression of INHBA downregulated the expression of Inhibin Subunit Alpha (INHA). Based on RNA-Sequencing, we further examined the effect and molecular mechanism of INHBA knockdown in GCs on mRNA expression. A total of 1,687 differentially expressed genes (DEGs) were identified (Fold change ≥ 2; False-discovory-rates (FDR) ≤ 0.01), of which 602 genes were upregulated and 1,087 genes were downregulated in the INHBA interference group compared with the control groups. Gene Ontology (GO) enrichment indicated that these DEGs were mainly involved in the regulation of cell cycle, protein serine/threonine kinase activity, and actin cytoskeleton reorganization. Moreover, DEGs were significantly enriched in 40 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including P53, progesterone-mediated oocyte maturation, and PI3K-AKT signaling pathways. We also noted a positive correlation between INHBA level and many PI3K/Akt/mTOR pathway-related genes at the gene or/and protein expression. Overall, this study may contribute to a better understanding of the roles of INHBA on GCs of prolific sheep, as well as the molecular effect of low INHBA expression on GCs, clarifying some reproductive failures.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Femenino , Animales , Ovinos/genética , RNA-Seq/veterinaria , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Inhibinas/metabolismo , Células de la Granulosa/fisiología
19.
Front Bioinform ; 2: 729902, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304286

RESUMEN

Background: Inhibin, beta A (INHBA) is a member of the transforming growth factor-ß superfamily and is associated with carcinogenesis and cancer progression in several types of human cancers. However, its significance in breast cancer has not been evaluated. Here, we investigated the prognostic value of INHBA and its correlation with tumor-infiltration immune cells in the microenvironment of breast cancer. Methods: In this study, we analyzed the INHBA expression profile in the Oncomine database and Tumor Immune Estimation Resource 2.0 (TIMER2.0) site. Using Breast Cancer Gene-Expression Miner (bc-GenExMiner v4.7) tool and the UALCAN cancer database, we further evaluated the correlation of INHBA expression with clinicopathological factors in breast cancer. Then, we assessed the clinical prognostic value of INHBA using Kaplan-Meier Plotter and the PrognoScan databases. The correlations between INHBA and tumor-infiltrating immune cells were investigated via TIMER2.0. In addition, correlations between INHBA expression and gene markers of immune infiltrates were analyzed by TIMER2.0 and Gene Expression Profiling Interactive Analysis 2. Results: Compared with the level in normal tissues, the INHBA mRNA expression was upregulated in different subtypes of breast cancer, and its expression was positively correlated with progesterone receptor, human epidermal growth factor receptor-2 status, and PAM50 subtypes but negatively related to age and basal-like status. The INHBA protein was also highly expressed in primary breast cancer and closely related to the pathological stage. Patients with high INHBA expression levels showed worse overall survival, relapse-free survival, and distant metastasis-free survival. Also, high INHBA expression was significantly associated with worse overall survival and relapse-free survival in positive lymph nodes. Of interest, INHBA expression was negatively correlated with infiltrating levels of activated NK cells, NKT, and CD4+ T cells but was positively correlated with tumor infiltration of CD8+ T cells, neutrophils, especially macrophages and cancer-associated fibroblasts. Moreover, INHBA expression showed strong correlations with various markers of monocytes/macrophages and cancer-associated fibroblasts. Conclusion: High INHBA expression is correlated with poor prognosis and the infiltration of immune cells in the tumor microenvironment. These findings suggest that INHBA may be involved in immune escape and can serve as a potential biomarker of prognosis and tumor-infiltrating immune cells.

20.
BMC Cancer ; 22(1): 953, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064338

RESUMEN

PURPOSE: Adenocarcinomas of the esophagus (AEG) and stomach (AS) are among the most common cancers worldwide. Novel markers for risk stratification and guiding treatment are strongly needed. Activin is a multi-functional cytokine with context specific pro- and anti-tumorigenic effects. We aimed to investigate the prognostic role of activin tumor protein expression in AEG/ASs. METHODS: Tissue from a retrospective cohort of 277 patients with AEG/AS treated primarily by surgery at the Charité - Universitätsmedizin Berlin was collected and analyzed by immunohistochemistry using a specific antibody to the activin homodimer inhibin beta A. Additionally, we evaluated T-cell infiltration and PD1 expression as well as expression of PD-L1 by immunohistochemistry as possible confounding factors. Clinico-pathologic data were collected and correlated with activin protein expression. RESULTS: Out of 277 tumor samples, 72 (26.0%) exhibited high activin subunit inhibin beta A protein expression. Higher expression was correlated with lower Union for International Cancer Control (UICC) stage and longer overall survival. Interestingly, activin subunit expression correlated with CD4+ T-cell infiltration, and the correlation with higher overall survival was exclusively seen in tumors with high CD4+ T-cell infiltration, pointing towards a role of activin in the tumor immune response in AEG/ASs. CONCLUSION: In our cohort of AEG/AS, higher activin subunit levels were correlated with longer overall survival, an effect exclusively seen in tumors with high CD4+ cell infiltration. Further mechanistic research is warranted discerning the exact effect of this context specific cytokine.


Asunto(s)
Activinas , Adenocarcinoma , Humanos , Adenocarcinoma/cirugía , Citocinas , Neoplasias Esofágicas , Subunidades beta de Inhibinas , Inhibinas , Pronóstico , Estudios Retrospectivos , Estómago
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA