Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Intervalo de año de publicación
1.
Virus Genes ; 60(5): 559-562, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39028407

RESUMEN

The Equid alphaherpesvirus type 1 (EHV-1) infection can have devastating economic consequences in the horse industry due to large-scale outbreaks of abortions, perinatal foal mortality, and myeloencephalopathy. The present study analyzed the genome of two isolates obtained from aborted fetuses in Argentina, E/745/99 and E/1297/07. The E745/99 genome shares 98.2% sequence identity with Ab4, a reference EHV-1 strain. The E/1297/07 genome shares 99.8% identity with NY03, a recombinant strain containing part of ORF64 and part of the intergenic region from Equid alphaherpesvirus-4 (EHV-4). The E/1297/07 genome has the same breakpoints as other United States and Japanese recombinants, including NY03. The recombinant regions have varying numbers of tandem repeat sequences and different minor parental sequences (EHV-4), suggesting distinct origins of the recombinant events. These are the first complete genomes of EHV-1 from Argentina and South America available in the Databases.


Asunto(s)
Genoma Viral , Infecciones por Herpesviridae , Herpesvirus Équido 1 , Filogenia , Argentina , Herpesvirus Équido 1/genética , Herpesvirus Équido 1/aislamiento & purificación , Herpesvirus Équido 1/clasificación , Animales , Genoma Viral/genética , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Caballos/virología , Recombinación Genética , Enfermedades de los Caballos/virología , Sistemas de Lectura Abierta/genética , Secuenciación Completa del Genoma , ADN Viral/genética
2.
Avian Dis ; 68(2): 112-116, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38885052

RESUMEN

Infectious laryngotracheitis (ILT) is a very serious worldwide respiratory disease of poultry, with many countries reporting ILT infections over the last decade. However, few reports are available regarding ILT disease prevalence in poultry in Turkey. Accordingly, the present study investigated ILT infection in Turkish broiler flocks between 2018 and 2022. Circulating ILT strains were characterized by sequence and phylogenetic analysis of two fragments of the infected-cell protein 4 gene. ILT virus (ILTV) was confirmed by quantitative PCR in 8 of the 21 flocks examined. As in other diseases, co-infections with other respiratory pathogens in confirmed ILT cases may worsen the symptoms and prolong the disease course. The present study confirmed co-infections with infectious bronchitis virus (13/21 tested flocks and 5/8 ILTV-positive flocks), indicating the importance of these pathogens in the occurrence of ILT infections.


Circulación y caracterización molecular del virus de la laringotraqueítis infecciosa en bandadas de aves de corral con trastornos respiratorios en Turquía, 2018­2022. La laringotraqueítis infecciosa (ILT) es una enfermedad respiratoria muy seria de la industria avícola en todo el mundo y muchos países han notificado infecciones por esta enfermedad durante la última década. Sin embargo, hay pocos informes disponibles sobre la prevalencia de laringotraqueítis infecciosa en la avicultura de Turquía. En consecuencia, el presente estudio investigó la infección por laringotraqueítis infecciosa en parvadas de pollos de engorde en Turquía entre los años 2018 y 2022. Las cepas de laringotraqueítis infecciosa circulantes se caracterizaron mediante análisis de secuencias y filogenéticos de dos fragmentos del gene de la proteína 4 de las células infectadas. El virus ILT (ILTV) se confirmó mediante PCR cuantitativa en ocho de las 21 parvadas examinadas. Como ocurre con otras enfermedades, las coinfecciones con otros patógenos respiratorios en casos confirmados de laringotraqueítis infecciosa pueden complicar los signos clínicos y prolongar el curso de la enfermedad. El presente estudio confirmó coinfecciones con el virus de la bronquitis infecciosa (en 13/21 parvadas analizadas y en 5/8 parvadas positivas para laringotraqueítis infecciosa), lo que indica la importancia de estos patógenos en la aparición de infecciones por la laringotraqueítis infecciosa.


Asunto(s)
Pollos , Infecciones por Herpesviridae , Herpesvirus Gallináceo 1 , Filogenia , Enfermedades de las Aves de Corral , Animales , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Herpesvirus Gallináceo 1/genética , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/epidemiología , Turquía/epidemiología , Prevalencia
3.
Poult Sci ; 103(6): 103722, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626691

RESUMEN

The highly contagious, immunosuppressive, and cancer-causing Marek's disease virus (MDV) infects chickens. The financial costs of Marek's disease (MD) are significant for the chicken industry. In this study, a total of 180 samples from chicken farms suspected to be MDV-infected were collected. The chickens were sampled during the period between the months of October 2016 and February 2018 at Dakahlia and Damietta Governorates, Egypt. A total of 36 pooled samples were created. The prepared samples were inoculated into embryonated chicken eggs (ECEs). Indirect fluorescent antibody technique (IFAT) and ICP4 gene-based polymerase chain reaction (PCR) were used for MDV identification. For the genetic characterization of the identified virus, The ICP4 gene sequence was identified and compared with the sequences available from various regions of the world. Furthermore, the genomes of all detected MDVs were screened for the long terminal repeat (LTR) region of reticuloendotheliosis (REV) in their genomes. The results showed that 31 out of 36 pooled samples (86.1%) inoculated into ECEs displayed the characteristic pock lesions. By using IFAT and PCR to identify MDV in ECEs, positive results were found in 27 samples (75%). The Egyptian virus is thought to be genetically closely related to MDVs circulating in Ethiopia, China, and India. REV-LTR was amplified from 6 out of 27 field isolates genomes (22.2 %) while MDV vaccine strains were free from REV-LTR insertion. The integrated REV-LTRs depicted a close genetic relationship with those integrated in fowl poxvirus (FWPV) circulating in Egypt as well as those integrated in FWPVs and MDVs from China, USA, South Africa, and Australia. To the best of our knowledge, this investigation represents the first identification and characterization of REV-LTR insertions in Egyptian MDV field isolates. Given the findings above, additional research in the future seems crucial to determine how the REV-LTR insertions affect MDV pathogenesis, virulence, and insufficient vaccination protection.


Asunto(s)
Pollos , Herpesvirus Gallináceo 2 , Enfermedad de Marek , Enfermedades de las Aves de Corral , Animales , Enfermedad de Marek/virología , Enfermedad de Marek/epidemiología , Pollos/virología , Egipto/epidemiología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Herpesvirus Gallináceo 2/genética , Herpesvirus Gallináceo 2/aislamiento & purificación , Secuencias Repetidas Terminales , Virus de la Reticuloendoteliosis/genética , Virus de la Reticuloendoteliosis/aislamiento & purificación , Integración Viral , Genoma Viral
4.
Front Vet Sci ; 11: 1360878, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482171

RESUMEN

Sodium butyrate (NaB) has garnered attention in recent years for its ability to impede the malignant progression of tumors. In order to explore the potential inhibitory effects of NaB on the replication of Marek's disease virus (MDV) and subsequent lymphoma formation, newly hatched chickens were infected with the vvMDV Md5 strain and administered NaB prior to (prevention group) or following (treatment group) Md5 inoculation. The results revealed that NaB played a pivotal role in diminishing both the incidence and fatality rates in chickens afflicted with Md5 infection. Notably, NaB exhibited a remarkable capacity to inhibit the expression of MDV immediate early genes, i.e., ICP4 and ICP27, thus attenuating tumorigenesis in the chicken spleen. To further elucidate the mechanism of NaB on lymphoma cells, MDV bearing lymphoma cells, i.e., MSB-1 were exposed to NaB for 24 h prior to various experimental tests. The results revealed that NaB effectively hindered the proliferation, migration, and colony formation of MSB-1 cells. Furthermore, NaB demonstrated the ability to modulate the key molecules in mitochondrial apoptosis pathway. Taken together, these findings reveal that NaB can impede the lymphoma caused by MDV via regulating the mitochondrial apoptosis pathway, both in vitro and in vivo. These results suggest that the utilization of NaB warrants serious consideration as a promising approach for the prevention of MDV.

5.
Microorganisms ; 12(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38399666

RESUMEN

The herpes virus genome bears more than 80 strong transcriptional promoters. Upon entry into the host cell nucleus, these genes are transcribed in an orderly manner, producing five immediate-early (IE) gene products, including ICP0, ICP4, and ICP22, while non-IE genes are mostly silent. The IE gene products are necessary for the transcription of temporal classes following sequentially as early, leaky late, and true late. A recent analysis using precision nuclear run-on followed by deep sequencing (PRO-seq) has revealed an important step preceding all HSV-1 transcription. Specifically, the immediate-early proteins ICP4 and ICP0 enter the cell with the incoming genome to help preclude the nascent antisense, intergenic, and sense transcription of all viral genes. VP16, which is also delivered into the nucleus upon entry, almost immediately reverses this repression on IE genes. The resulting de novo expression of ICP4 and ICP22 further repress antisense, intergenic, and early and late viral gene transcription through different mechanisms before the sequential de-repression of these gene classes later in infection. This early repression, termed transient immediate-early protein-mediated repression (TIEMR), precludes unproductive, antisense, intergenic, and late gene transcription early in infection to ensure the efficient and orderly progression of the viral cascade.

6.
Viruses ; 15(7)2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37515145

RESUMEN

The strong contribution of RAS-related protein 1b (Rap1b) to cytoskeleton remodeling determines intracellular and extracellular physiological activities, including the successful infection of viruses in permissive cells, but its role in the HSV-1 life cycle is still unclear. Here, we demonstrated that the HSV-1 immediate early (IE) gene ICP4 inhibits protein kinase A (PKA) phosphorylation to induce Rap1b-activation-mediated viral infection. Rap1b activation and membrane enrichment begin at the early stage of HSV-1 infection and remain active during the proliferation period of the virus. Treating the cells with Rap1b small interfering RNA (siRNA) showed a dose-dependent decrease in viral infection levels, but no dose-dependent increase was observed after Rap1b overexpression. Further investigation indicated that the suppression of Rap1b activation derives from phosphorylated PKA and Rap1b mutants with partial or complete prenylation instead of phosphorylation, which promoted viral infection in a dose-dependent manner. Furthermore, the PKA agonist Forskolin disturbed Rap1b activation in a dose-dependent manner, accompanied by a decreasing trend in viral infection. Moreover, the HSV-1 IE gene ICP4 induced PKA dephosphorylation, leading to continuous Rap1b activation, followed by cytoskeleton rearrangement induced by cell division control protein 42 (CDC42) and Ras-related C3 botulinum toxin substrate 1 (RAC1). These further stimulated membrane-triggered physiological processes favoring virus infection. Altogether, we show the significance of Rap1b during HSV-1 infection and uncover the viral infection mechanism determined by the posttranslational regulation of the viral ICP4 gene and Rap1b host protein.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Proteínas Inmediatas-Precoces , Humanos , Células Epiteliales/metabolismo , Herpesvirus Humano 1/fisiología , Proteínas Inmediatas-Precoces/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
7.
J Virol ; 97(7): e0195722, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37310267

RESUMEN

Herpes simplex virus type-1 (HSV-1) protein ICP27 is an essential immediate early (IE) protein that promotes the expression of viral early (E) and late (L) genes via multiple mechanisms. Our understanding of this complex regulatory protein has been greatly enhanced by the characterization of HSV-1 mutants bearing engineered alterations in the ICP27 gene. However, much of this analysis has been performed in interferon-deficient Vero monkey cells. Here, we assessed the replication of a panel of ICP27 mutants in several other cell types. Our analysis shows that mutants lacking ICP27's amino (N)-terminal nuclear export signal (NES) display a striking cell type-dependent growth phenotype, i.e., they grow semi-permissively in Vero and some other cells but are tightly blocked for replication in primary human fibroblasts and multiple human cell lines. This tight growth defect correlates with a failure of these mutants to replicate viral DNA. We also report that HSV-1 NES mutants are deficient in expressing the IE protein ICP4 at early times postinfection. Analysis of viral RNA levels suggests that this phenotype is due, at least in part, to a defect in the export of ICP4 mRNA to the cytoplasm. In combination, our results (i) show that ICP27's NES is critically important for HSV-1 replication in many human cells, and (ii) suggest that ICP27 plays a heretofore unappreciated role in the expression of ICP4. IMPORTANCE HSV-1 IE proteins drive productive HSV-1 replication. The major paradigm of IE gene induction, developed over many years, involves the parallel activation of the five IE genes by the viral tegument protein VP16, which recruits the host RNA polymerase II (RNAP II) to the IE gene promoters. Here, we provide evidence that ICP27 can enhance ICP4 expression early in infection. Because ICP4 is required for transcription of viral E and L genes, this finding may be relevant to understanding how HSV-1 enters and exits the latent state in neurons.


Asunto(s)
Herpesvirus Humano 1 , Proteínas Inmediatas-Precoces , Animales , Chlorocebus aethiops , Humanos , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Señales de Exportación Nuclear , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Línea Celular , Células Vero , Replicación Viral
8.
Pathogens ; 12(6)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37375504

RESUMEN

Herpes simplex virus type 1 (HSV-1) is a leading cause of encephalitis and infectious blindness. The commonly used clinical therapeutic drugs are nucleoside analogues such as acyclovir. However, current drugs for HSV cannot eliminate the latent virus or viral reactivation. Therefore, the development of new treatment strategies against latent HSV has become an urgent need. To comprehensively suppress the proliferation of HSV, we designed the CLEAR strategy (coordinated lifecycle elimination against viral replication). VP16, ICP27, ICP4, and gD-which are crucial genes that perform significant functions in different stages of the HSV infection lifecycle-were selected as targeting sites based on CRISPR-Cas9 editing system. In vitro and in vivo investigations revealed that genome editing by VP16, ICP27, ICP4 or gD single gene targeting could effectively inhibit HSV replication. Moreover, the combined administration method (termed "Cocktail") showed superior effects compared to single gene editing, which resulted in the greatest decrease in viral proliferation. Lentivirus-delivered CRISPR-Cas9/gRNA editing could effectively block HSV replication. The CLEAR strategy may provide new insights into the potential treatment of refractory HSV-1-associated diseases, particularly when conventional approaches have encountered resistance.

9.
Virol J ; 20(1): 45, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890573

RESUMEN

Marek's disease virus (MDV) is a highly contagious, immunosuppressive, and oncogenic chicken pathogen causing marek's disease (MD). In this outbreak-based study, 70 dual-purpose chickens that originated from poultry farms in Northwest Ethiopia and suspected of MD were sampled for pathological and virological study from January 2020 to June 2020. Clinically, affected chickens showed inappetence, dyspnea, depression, shrunken combs, and paralysis of legs, wings, and neck, and death. Pathologically, single or multiple greyish white to yellow tumor-like nodular lesions of various size were appreciated in visceral organs. In addition, splenomegaly, hepatomegaly, renomegaly, and sciatic nerve enlargement were observed. Twenty-seven (27) pooled clinical samples i.e. 7 pooled spleen samples and 20 pooled feathers samples were aseptically collected. Confluent monolayer of Chicken Embryo Fibroblast cells was inoculated with a suspension of pathological samples. Of this, MDV-suggestive cytopathic effects were recorded in 5 (71.42%) and 17 (85%) pooled spleen and feather samples respectively. Molecular confirmation of pathogenic MDV was conducted using conventional PCR amplifying 318 bp of ICP4 gene of MDV-1, of which, 40.9% (9/22) tested positive. In addition, 5 PCR-positive samples from various farms were sequenced further confirming the identity of MDV. The ICP4 partial gene sequences were submitted to GenBank with the following accession numbers: OP485106, OP485107, OP485108, OP485109, and OP485110. Comparative phylogenetics showed, two of the isolates from the same site, Metema, seem to be clonal complexes forming distinct cluster. The other three isolates, two from Merawi and one from Debretabor, appear to represent distinct genotypes although the isolate from Debretabor is closer to the Metema clonal complex. On the other hand, the isolates from Merawi appeared genetically far related to the rest of the 3 isolates and clustered with Indian MDV strains included in the analysis. This study presented the first molecular evidence of MDV in chicken farms from Northwest Ethiopia. Biosecurity measures should strictly be implemented to hinder the spread of the virus. Nationwide studies on molecular characteristics of MDV isolates, their pathotypes, and estimation of the economic impact associated with the disease may help justify production and use of MD vaccines within the country.


Asunto(s)
Herpesvirus Gallináceo 2 , Enfermedad de Marek , Enfermedades de las Aves de Corral , Embrión de Pollo , Animales , Enfermedad de Marek/epidemiología , Pollos , Etiopía/epidemiología , Granjas , Herpesvirus Gallináceo 2/genética
10.
J Virol ; 96(23): e0101022, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36416585

RESUMEN

Bovine herpesvirus 1 (BoHV-1), an important pathogen of cattle, establishes lifelong latency in sensory neurons within trigeminal ganglia (TG) after acute infection. The BoHV-1 latency-reactivation cycle, like other alphaherpesvirinae subfamily members, is essential for viral persistence and transmission. Notably, cells within pharyngeal tonsil (PT) also support a quiescent or latent BoHV-1 infection. The synthetic corticosteroid dexamethasone, which mimics the effects of stress, consistently induces BoHV-1 reactivation from latency allowing early stages of viral reactivation to be examined in the natural host. Based on previous studies, we hypothesized that stress-induced cellular factors trigger expression of key viral transcriptional regulatory genes. To explore this hypothesis, RNA-sequencing studies compared viral gene expression in PT during early stages of dexamethasone-induced reactivation from latency. Strikingly, RNA encoding infected cell protein 4 (bICP4), which is translated into an essential viral transcriptional regulatory protein, was detected 30 min after dexamethasone treatment. Ninety minutes after dexamethasone treatment bICP4 and, to a lesser extent, bICP0 RNA were detected in PT. All lytic cycle viral transcripts were detected within 3 h after dexamethasone treatment. Surprisingly, the latency related (LR) gene, the only viral gene abundantly expressed in latently infected TG neurons, was not detected in PT during latency. In TG neurons, bICP0 and the viral tegument protein VP16 are expressed before bICP4 during reactivation, suggesting distinct viral regulatory genes mediate reactivation from latency in PT versus TG neurons. Finally, these studies confirm PT is a biologically relevant site for BoHV-1 latency, reactivation from latency, and virus transmission. IMPORTANCE BoHV-1, a neurotropic herpesvirus, establishes, maintains, and reactivates from latency in neurons. BoHV-1 DNA is also detected in pharyngeal tonsil (PT) from latently infected calves. RNA-sequencing studies revealed the viral infected cell protein 4 (bICP4) RNA was expressed in PT of latently infected calves within 30 min after dexamethasone was used to initiate reactivation. As expected, bICP4 RNA was not detected during latency. All lytic cycle viral genes were expressed within 3 h after dexamethasone treatment. Conversely, bICP0 and the viral tegument protein VP16 are expressed prior to bICP4 in trigeminal ganglionic neurons during reactivation. The viral latency related gene, which is abundantly expressed in latently infected neurons, was not abundantly expressed in PT during latency. These studies provide new evidence PT is a biologically relevant site for BoHV-1 latency and reactivation. Finally, we predict other alphaherpesvirinae subfamily members utilize PT as a site for latency and reactivation.


Asunto(s)
Tonsila Faríngea , Infecciones por Herpesviridae , Herpesvirus Bovino 1 , Proteínas del Envoltorio Viral , Activación Viral , Animales , Bovinos , Tonsila Faríngea/virología , Dexametasona/farmacología , Etopósido/farmacología , Herpesvirus Bovino 1/fisiología , ARN/metabolismo , Ganglio del Trigémino , Proteínas Virales/genética , Proteínas Virales/metabolismo , Latencia del Virus , Proteínas del Envoltorio Viral/metabolismo
11.
Antiviral Res ; 208: 105432, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36228762

RESUMEN

G-quadruplexes (G4s) are non-canonical nucleic acid structures that regulate key biological processes, from transcription to genome replication both in humans and viruses. The herpes simplex virus-1 (HSV-1) genome is prone to form G4s that, along with proteins, regulate its viral cycle. General G4 ligands have been shown to hamper the viral cycle, pointing to viral G4s as original antiviral targets. Because cellular G4s are also normally present in infected cells, the quest for improved anti-HSV-1 G4 ligands is still open. Here, we evaluated a series of new quindoline-derivatives which showed high binding to and stabilization of the viral G4s. They displayed nanomolar-range anti-HSV-1 activity paralleled by negligible cytotoxicity in human cells, thus proving remarkable selectivity. The best-in-class compound inhibited the viral life cycle at the early times post infection up to the step of viral genome replication. In infected human cells, it reduced expression of ICP4, the main viral transcription factor, by stabilizing the G4s embedded in ICP4 promoter. Quindoline-derivatives thus emerge as a new class of G4 ligands with potent dual anti HSV-1 activity.


Asunto(s)
G-Cuádruplex , Herpes Simple , Herpesvirus Humano 1 , Quinolinas , Humanos , Antivirales/farmacología , Antivirales/química , Ligandos , Herpes Simple/tratamiento farmacológico
12.
Immun Inflamm Dis ; 10(7): e667, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35759241

RESUMEN

BACKGROUND: Herpes simplex virus-type 1 (HSV-1) can cause diseases, especially amongst neonates and immunocompromised hosts. Hence, developing a novel anti-HSV-1 drug with low-level toxicity is vital. Triptolide (TP), a diterpenoid triepoxide is a natural product with range of bioactivity qualities. METHODS: In this study, viral infection was assessed in different phases of the HSV-1 replication cycle on A549 cells, using various assays, such as adsorption inhibition assay, penetration inhibition assay, time-of-addition assay, and quantitative polymerase chain reaction (qPCR). RESULTS: The results indicate that TP can effectively inhibit HSV-1 infection in the lowest range of concentration. TP exhibited significant inhibitory effect on HSV-1 plaque formation, with 50% effective concentration (EC50) of 0.05 µM. Furthermore, the time-of-addition assay suggests that TP has viral inhibitory effects when it was added less than 8 h postinfection (h.p.i.). This result is further confirmed by decline in the expression viral immediate-early genes (ICP4, ICP22, and ICP27) in 6 h.p.i in the TP-treated group compared to the control group, evaluated by real-time qPCR. The Western blotting result was also consistent with the previous findings, which confirms that TP can positively affect ICP4 during HSV-1 infection. CONCLUSIONS: The TP also showed antiviral activity against HSV-1. This dose-dependent activity is an indication of a particular cellular component, rather than cytotoxicity that has mediated its function. Finally, the result suggest a new approach for an effective treatment option of the HSV-1 infections.


Asunto(s)
Diterpenos , Herpes Simple , Herpesvirus Humano 1 , Animales , Antivirales/farmacología , Chlorocebus aethiops , Diterpenos/metabolismo , Diterpenos/farmacología , Compuestos Epoxi , Herpes Simple/tratamiento farmacológico , Humanos , Recién Nacido , Fenantrenos , Células Vero
13.
Antiviral Res ; 196: 105207, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34774602

RESUMEN

Although currently available antivirals against certain herpesviruses are effective, the development of resistance during long-term use has necessitated the search for seed compounds that work against novel target molecules. In this report, we identified a thiourea derivative compound, 147B3, that inhibits the infection of human cytomegalovirus (HCMV) in fibroblasts and herpes simplex virus type 1 (HSV-1) in Vero cells at a 50% effective concentration of 0.5 µM and 1.9 µM, respectively. Characterization of the compound provided the following clues regarding its mode of action. 1) Time-of-addition and block-release assays showed that 147B3 behaved similarly to ganciclovir. 2) 147B3 reduced the expression of early and late but not immediate-early gene products and the accumulation of viral genomic DNA in both HCMV-infected and HSV-1-infected cells. 3) 147B3 inhibited the HCMV IE2-dependent activation of viral early gene promoters. 4) Four HSV-1 clones resistant to 147B3 were isolated and next-generation sequencing analysis of their genome DNA revealed that all of them had a mutation(s) in the infected cell protein 4 (ICP4) gene, which encodes a viral transcriptional factor. 5) Although 147B3 did not reduce the amount of ICP4 in an immunoblotting analysis, it changed the localization of the ICP4 from the speckles in the nuclei to diffused dots in the cytoplasm. 6) 147B3 did not affect the localization of promyelocytic leukemia (PML) bodies. Our findings suggest that 147B3 targets viral transactivators, potentially through their interaction with factors required for the viral gene expression system.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Citomegalovirus/efectos de los fármacos , Herpesvirus Humano 1/efectos de los fármacos , Tiourea/química , Tiourea/farmacología , Transactivadores/antagonistas & inhibidores , Animales , Antivirales/aislamiento & purificación , Chlorocebus aethiops , Citomegalovirus/genética , Infecciones por Citomegalovirus/tratamiento farmacológico , Fibroblastos/efectos de los fármacos , Fibroblastos/virología , Herpes Simple/tratamiento farmacológico , Herpesvirus Humano 1/genética , Humanos , Tiourea/aislamiento & purificación , Células Vero
14.
Vet World ; 14(5): 1342-1353, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34220140

RESUMEN

BACKGROUND AND AIM: The Marek's disease virus (MDV) is a neoplastic disease causing serious economic losses in poultry production. This study aimed to investigate MDV occurrence in poultry flocks in the Lower Egypt during the 2020 breakout and genetically characterized Meq, gL, and ICP4 genes in field strains of MDV. MATERIALS AND METHODS: Forty samples were collected from different breeds from eight Egyptian governorates in 2020. All flocks had received a bivalent vaccine (herpesvirus of turkey FC-126 + Rispens CVI988). However, weight loss, emaciation, reduced egg production, paralysis, and rough/raised feather follicles occurred. Samples were collected from feather follicles, liver, spleen, and nerve tissue for diagnosis by polymerase chain reaction. MDV genetic characterization was then performed by sequencing the Meq, gL, and ICP4 genes of five positive samples representing different governorates and breeds. RESULTS: A total of 28 samples were positive for MDV field strains, while two were related to MDV vaccinal strains. All samples tested negative for ALV (A, B, C, D, and J) and REV. Phylogenetic analysis of the Meq gene of sequenced samples revealed that all MDVs were related to the highly virulent European viruses (Gallid herpesvirus 2 ATE and PC12/30) with high amino acid (A.A.) identity 99.2-100%. Alternatively, there was low A.A. identity with the vaccine strains CVI988 and 3004 (up to 82.5%). These results indicate that further investigation of the efficacy of current Egyptian vaccines is required. The Egyptian strains also harbor a specific mutation, allowing clustering into two subgroups (A and B). By mutation analysis of the Meq gene, the Egyptian viruses in our study had R101K, P217A, and E263D mutations present in all Egyptian viruses. Furthermore, R176A and T180A mutations specific to our strains contributed to the high virulence of highly virulent strains. There were no mutations of the gL or ICP4 genes. CONCLUSION: Further studies should evaluate the protection contributed by current vaccines used in Egypt.

15.
Viruses ; 13(6)2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207926

RESUMEN

Gallid alpha-herpesvirus 1, also known as avian infectious laryngotracheitis virus (ILTV), continues to cause huge economic losses to the poultry industry worldwide. Similar to that of other herpesvirus-encoded proteins, the expression of viral genes encoded by ILTV is regulated by a cascade, and the underlying regulatory mechanism remains largely unclear. The viral immediate-early (IE) gene ICP4 plays a prominent role in the initiation of the transcription of early and late genes during ILTV replication. In this study, we identified AP-1 as the key regulator of the transcription of ILTV genes by bioinformatics analysis of genome-wide transcriptome data. Subsequent functional studies of the key members of the AP-1 family revealed that Fos, but not Jun, regulates ILTV infection through AP-1 since knockdown of Fos, but not Jun, by gene silencing significantly reduced ICP4 transcription and subsequent viral genome replication and virion production. Using several approaches, we identified ICP4 as a bona fide target gene of Fos that regulated Fos and has Fos response elements within its promoter. Neither the physical binding of Jun to the promoter of ICP4 nor the transcriptional activity of Jun was observed. In addition, knockdown of Fos reduced the transcription of MDH1 and ATP5A1, genes encoding two host rate-limiting enzymes essential for the production of the TCA intermediates OAA and ATP. The biological significance of the transcriptional regulation of MDH1 and ATP5A1 by Fos in ILTV infection was supported by the fact that anaplerosis of OAA and ATP rescued both ICP4 transcription and virion production in infected cells under when Fos was silenced. Our study identified the transcription factor Fos as a key regulator of ILTV infection through its transcription factor function on both the virus and host sides, improving the current understanding of both avian herpesvirus-host interactions and the roles of AP-1 in viral infection.


Asunto(s)
Regulación de la Expresión Génica , Infecciones por Herpesviridae/veterinaria , Herpesvirus Gallináceo 1/fisiología , Interacciones Huésped-Patógeno , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/virología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Animales , Línea Celular , Pollos , Biología Computacional , Metabolismo Energético , Perfilación de la Expresión Génica , Genes Inmediatos-Precoces , Interacciones Huésped-Patógeno/genética , Modelos Biológicos , Enfermedades de las Aves de Corral/diagnóstico , Enfermedades de las Aves de Corral/metabolismo , Replicación Viral
16.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923223

RESUMEN

Herpes Simplex Virus Type-1 (HSV-1) forms progeny in the nucleus within distinct membrane-less inclusions, the viral replication compartments (VRCs), where viral gene expression, DNA replication, and packaging occur. The way in which the VRCs maintain spatial integrity remains unresolved. Here, we demonstrate that the essential viral transcription factor ICP4 is an intrinsically disordered protein (IDP) capable of driving protein condensation and liquid-liquid phase separation (LLPS) in transfected cells. Particularly, ICP4 forms nuclear liquid-like condensates in a dose- and time-dependent manner. Fluorescence recovery after photobleaching (FRAP) assays revealed rapid exchange rates of EYFP-ICP4 between phase-separated condensates and the surroundings, akin to other viral IDPs that drive LLPS. Likewise, HSV-1 VRCs revealed by EYFP-tagged ICP4 retained their liquid-like nature, suggesting that they are phase-separated condensates. Individual VRCs homotypically fused when reaching close proximity and grew over the course of infection. Together, the results of this study demonstrate that the HSV-1 transcription factor ICP4 has characteristics of a viral IDP, forms condensates in the cell nucleus by LLPS, and can be used as a proxy for HSV-1 VRCs with characteristics of liquid-liquid phase-separated condensates.


Asunto(s)
Regulación Viral de la Expresión Génica , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Compartimentos de Replicación Viral , Animales , Núcleo Celular/metabolismo , Chlorocebus aethiops , Herpes Simple/genética , Herpes Simple/metabolismo , Proteínas Inmediatas-Precoces/genética , Proteínas Intrínsecamente Desordenadas/genética , Extracción Líquido-Líquido , Transición de Fase , Células Vero
17.
Viruses ; 13(4)2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921858

RESUMEN

Infectious laryngotracheitis (ILT) is an acute, highly contagious infectious disease of the upper respiratory tract in chickens and other poultry species that causes significant economic losses in countries worldwide. Between 2017 and 2019, seven outbreaks of mild to severe respiratory disorders with high suspicion of ILT occurred in commercial and backyard poultry flocks in Slovenia. In all submissions, infection with ILT virus (ILTV) was confirmed by PCR, which is the first report of ILT in Slovenia. Circulating ILT strains were characterized by the sequence and phylogenetic analysis of two fragments of the ICP4 gene. Four strains-three detected in non-vaccinated flocks and one in a flock vaccinated against ILT-were identical or very similar to the chicken embryo-origin live virus vaccines, and the other three were closely related to Russian, Chinese, Australian, and American field strains and to tissue culture origin vaccine strains. As in other diseases, coinfections with other respiratory pathogens in confirmed ILT cases may cause a more severe condition and prolong the course of the disease. In our study, coinfections with Mycoplasma synoviae (7/7 tested flocks), infectious bronchitis virus (5/5 tested flocks), Mycoplasma gallisepticum (4/7 tested flocks), Ornithobacterium rhinotracheale (3/4 tested flocks), and avian pox virus (1/2 tested flocks) were confirmed, indicating the importance of these pathogens in the occurrence of ILT infections.


Asunto(s)
Coinfección/veterinaria , Infecciones por Herpesviridae/veterinaria , Herpesvirus Gallináceo 1/genética , Herpesvirus Gallináceo 1/patogenicidad , Enfermedades de las Aves de Corral/virología , Aves de Corral/virología , Enfermedades Respiratorias/veterinaria , Animales , Pollos/virología , Coinfección/microbiología , Coinfección/virología , Infecciones por Herpesviridae/diagnóstico , Infecciones por Herpesviridae/epidemiología , Infecciones por Herpesviridae/virología , Herpesvirus Gallináceo 1/clasificación , Herpesvirus Gallináceo 1/aislamiento & purificación , Filogenia , Enfermedades de las Aves de Corral/diagnóstico , Enfermedades de las Aves de Corral/epidemiología , Enfermedades Respiratorias/diagnóstico , Enfermedades Respiratorias/epidemiología , Enfermedades Respiratorias/virología , Análisis de Secuencia de ADN , Eslovenia/epidemiología
18.
Microorganisms ; 9(1)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33450980

RESUMEN

Marek's disease (MD), caused by MD herpesvirus (MDV), is an economically important disease in chickens. The efficacy of the existing vaccines against evolving virulent stains may become limited and necessitates the development of novel antiviral strategies to protect poultry from MDV strains with increased virulence. The CRISPR/Cas9 system has emerged as a powerful genome editing tool providing an opportunity to develop antiviral strategies for the control of MDV infection. Here, we characterized Tol2 transposon constructs encoding Cas9 and guide RNAs (gRNAs) specific to the immediate early infected-cell polypeptide-4 (ICP4) of MDV. We generated transgenic chickens that constitutively express Cas9 and ICP4-gRNAs (gICP4) and challenged them via intraabdominal injection of MDV-1 Woodlands strain passage-19 (p19). Transgenic chickens expressing both gRNA/Cas9 had a significantly reduced replication of MDV in comparison to either transgenic Cas9-only or the wild-type (WT) chickens. We further confirmed that the designed gRNAs exhibited sequence-specific virus interference in transgenic chicken embryo fibroblast (CEF) expressing Cas9/gICP4 when infected with MDV but not with herpesvirus of turkeys (HVT). These results suggest that CRISPR/Cas9 can be used as an antiviral approach to control MDV infection in chickens, allowing HVT to be used as a vector for recombinant vaccines.

19.
J Virol ; 95(4)2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33208447

RESUMEN

Following acute infection, herpes simplex virus 1 (HSV-1) lytic cycle viral gene expression is silenced; consequently, lifelong latency in neurons is established. Certain external stimuli that trigger reactivation from latency also activate the glucocorticoid receptor (GR). The synthetic corticosteroid dexamethasone, but not a GR-specific antagonist, increases the frequency of explant-induced reactivation from latency and stimulates productive infection. Furthermore, dexamethasone increases expression of cellular transcription factors in trigeminal ganglionic neurons: for example, SLUG and three Krüppel-like transcription factor (KLF) family members, KLF4, KLF15, and promyelocytic leukemia zinc finger protein (PLZF). Consequently, we hypothesized that stress-induced transcription factors stimulate expression of ICP4, a viral transcriptional regulator required for productive infection. New studies demonstrated that GR and KLF4, PLZF, or SLUG cooperatively transactivate the ICP4 enhancer upstream of a minimal promoter in monkey kidney cells (Vero) and mouse neuroblastoma cells (Neuro-2A). Strikingly, mutagenesis of two KLF4/Sp1 binding sites reduced GR- plus KLF4-, PLZF-, or SLUG-mediated transactivation to basal levels. A consensus enhancer (E)-Box adjacent to a KLF4/Sp1 binding site was also required for GR- and SLUG-, but not KLF family member-, mediated transactivation of the ICP4 promoter. Chromatin immunoprecipitation studies (ChIP) revealed GR and stress-induced transcription factors occupy ICP4 enhancer sequences. Conversely, specific binding was generally reduced in the KLF4/Sp1 mutant. Furthermore, GR and SLUG occupancy of ICP4 enhancer sequences was reduced in the E-Box mutant. Based on these studies, we suggest stressful stimuli can trigger productive infection because GR and specific stress-induced transcription factors activate ICP4 expression.IMPORTANCE Certain stressful stimuli activate the glucocorticoid receptor (GR) and increase the incidence of herpes simplex virus 1 (HSV-1) reactivation from latency. For example, a corticosteroid antagonist impairs productive infection and virus shedding following explant of trigeminal ganglia from latently infected mice. Infected cell protein 4 (ICP4) is the only immediate early viral transcriptional regulator required for productive infection, suggesting stressful stimuli stimulate ICP4 expression. New studies revealed GR and stress-induced transcription factors identified during reactivation from latency, SLUG and three Krüppel-like transcription factor family members (KLF4, KLF15, and promyelocytic leukemia zinc finger protein), cooperatively transactivate the ICP4 enhancer. Two KLF4 consensus binding sites were crucial for cooperative transactivation of the ICP4 enhancer. A consensus enhancer-box also mediated cooperative transactivation of the ICP4 enhancer by GR and SLUG. The ability of GR and stress-induced transcription factors to transactivate ICP4 enhancer activity is predicted to trigger productive infection following stressful stimuli.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1/fisiología , Proteínas Inmediatas-Precoces/inmunología , Receptores de Glucocorticoides/inmunología , Activación Viral , Latencia del Virus , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Regulación Viral de la Expresión Génica , Herpes Simple/inmunología , Herpes Simple/virología , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/inmunología , Ratones , Proteína de la Leucemia Promielocítica con Dedos de Zinc/inmunología , Factores de Transcripción de la Familia Snail/inmunología , Activación Transcripcional , Células Vero
20.
Elife ; 82019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31638576

RESUMEN

Herpes simplex virus-1 (HSV-1) replicates within the nucleus coopting the host's RNA Polymerase II (Pol II) machinery for production of viral mRNAs culminating in host transcriptional shut off. The mechanism behind this rapid reprogramming of the host transcriptional environment is largely unknown. We identified ICP4 as responsible for preferential recruitment of the Pol II machinery to the viral genome. ICP4 is a viral nucleoprotein which binds double-stranded DNA. We determined ICP4 discriminately binds the viral genome due to the absence of cellular nucleosomes and high density of cognate binding sites. We posit that ICP4's ability to recruit not just Pol II, but also more limiting essential components, such as TBP and Mediator, create a competitive transcriptional environment. These distinguishing characteristics ultimately result in a rapid and efficient reprogramming of the host's transcriptional machinery, which does not occur in the absence of ICP4.


Asunto(s)
Herpesvirus Humano 1/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Nucleoproteínas/metabolismo , Factores de Transcripción/metabolismo , Replicación Viral/fisiología , Secuencia de Bases , Sitios de Unión , Proteínas Portadoras , Línea Celular , Ambiente , Genoma Viral , Herpesvirus Humano 1/genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Proteínas Inmediatas-Precoces/genética , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA