Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38140406

RESUMEN

This study investigates the radial growth response of five key European forest tree species, i.e., Fagus sylvatica, Picea abies, Abies alba, Quercus petraea, and Pinus sylvestris, to dry years in the West Carpathians, Slovakia. Utilizing data from ICP Forests Level I plots, we identified species-specific growth declines, particularly in Pinus sylvestris and Fagus sylvatica, with milder radial growth declines for Quercus petraea and Picea abies. Abies alba exhibited a growth peak in the mid-2000s, followed by a decline in the end of the observed period. Elevation emerged as the only significant environmental predictor, explaining 3.5% of growth variability during dry periods, suggesting a potential mitigating effect. The scope of this study was limited by the complex interplay of ecological factors that influence tree growth, which vary across the ICP Forests Level I monitoring sites. Nonetheless, our findings enhance the understanding of species-specific growth responses and offer insights for the climate-smart management of temperate forests under changing conditions.

2.
Plant Biol (Stuttg) ; 24(7): 1108-1119, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36169609

RESUMEN

European forests are an important source for timber production, human welfare, income, protection and biodiversity. During the last two decades, Europe has experienced a number of droughts which have been exceptional within the last 500 years, both in terms of duration and intensity. These droughts seem to leave remarkable imprints on the mortality dynamics of European forests. However, systematic observations on tree decline, with emphasis on a single species, has been scarce so far so that our understanding of mortality dynamics and drought occurrence is still limited at a continental scale. Here, we make use of the ICP Forest crown defoliation dataset, permitting us to retrospectively monitor tree mortality for all major conifers, major broadleaves, as well as a pooled dataset of minor tree species in Europe. In total, we analysed more than three million observations gathered during the last 25 years and employed a high-resolution drought index which can assess soil moisture anomaly based on a hydrological water-balance and runoff model. We found overall and species-specific increasing trends in mortality rates, accompanied by decreasing soil moisture. A generalized linear mixed model identified a previous-year soil moisture anomaly as the most important driver of mortality patterns in conifers, but the response was not uniform across the numerous analysed plots. We conclude that mortality patterns in European forests are currently reaching a concerning upward trend which could be further accelerated by global change-type droughts in the near future.


Asunto(s)
Bosques , Árboles , Humanos , Estudios Retrospectivos , Árboles/fisiología , Sequías , Suelo , Cambio Climático
3.
Glob Chang Biol ; 28(8): 2830-2841, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35090075

RESUMEN

Bark beetle infestation is a major driver of tree mortality that may be critical for forest persistence under climate change and the forecasted increase of extreme heat and drought episodes. Under this context, the environmental position of host tree populations within the species' climatic niche (central vs. marginal populations) is expected to be a determinant in the dynamics of insect-host systems. Here, we analyzed the recent patterns of bark beetle disturbance and forest resistance across European coniferous forests during the 2010-2018 period. We obtained bark beetle attack and tree mortality data from successive continental-scale forest condition surveys on 130 plots including five host trees and five bark beetle species, and characterized the climatic niche of each species. Then, we analyzed the overall forest resistance and species-specific responses, in terms of bark beetle attack and induced tree mortality, in relation to the distance to the niche optimum of both host tree and beetle species, previous drought events, and plot characteristics. Regional patterns of recent disturbance revealed that forests in central, north, and east of Europe could be at risk under the attack of multivoltine bark beetle species. We found that overall forest resistance to beetle attack was determined by several driving factors, which varied among species responses. Particularly, the environmental position of the affected forest within the host and beetle species' climatic niche and plot characteristics mediated the influence of drought on the resistance to beetle attack. In turn, forest resistance to induced tree mortality was determined exclusively by the maximum intensity and duration of drought events. Our findings highlight the importance of disturbance interactions and suggest that the joint influence of drought events and bark beetle disturbance will threaten the persistence of European coniferous forests, even in those tree populations close to their species' climatic optimum.


Asunto(s)
Escarabajos , Tracheophyta , Animales , Escarabajos/fisiología , Cycadopsida , Bosques , Corteza de la Planta , Árboles
4.
Plants (Basel) ; 12(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36616297

RESUMEN

Despite being adapted to a wide range of environmental conditions, the vitality of European beech is expected to be significantly affected by the projected effects of climate change, which we attempted to assess with foliar nutrition and crown defoliation, as two different, yet interlinked vitality indicators. Based on 28 beech plots of the ICP Forests Level I network, we set out to investigate the nutritional status of beech in Croatia, the relation of its defoliation and nutrient status, and the effects of environmental factors on this relation. The results indicate a generally satisfactory nutrition of common beech in Croatia. Links between defoliation and nutrition of beech are not very direct or very prominent; differences were observed only in some years and on limited number of plots. However, the applied multinomial logistic regression models show that environmental factors affect the relationship between defoliation and nutrition, as climate and altitude influence the occurrence of differences in foliar nutrition between defoliation categories.

5.
Glob Chang Biol ; 26(2): 392-409, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31437331

RESUMEN

Nutrient availability influences virtually every aspect of an ecosystem, and is a critical modifier of ecosystem responses to global change. Although this crucial role of nutrient availability in regulating ecosystem structure and functioning has been widely acknowledged, nutrients are still often neglected in observational and experimental synthesis studies due to difficulties in comparing the nutrient status across sites. In the current study, we explain different nutrient-related concepts and discuss the potential of soil-, plant- and remote sensing-based metrics to compare the nutrient status across space. Based on our review and additional analyses on a dataset of European, managed temperate and boreal forests (ICP [International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests] Forests dataset), we conclude that the use of plant- and remote sensing-based metrics that rely on tissue stoichiometry is limited due to their strong dependence on species identity. The potential use of other plant-based metrics such as Ellenberg indicator values and plant-functional traits is also discussed. We conclude from our analyses and review that soil-based metrics have the highest potential for successful intersite comparison of the nutrient status. As an example, we used and adjusted a soil-based metric, previously developed for conifer forests across Sweden, against the same ICP Forests data. We suggest that this adjusted and further adaptable metric, which included the organic carbon concentration in the upper 20 cm of the soil (including the organic fermentation-humus [FH] layer), the C:N ratio and pHCaCl2 of the FH layer, can be used as a complementary tool along with other indicators of nutrient availability, to compare the background nutrient status across temperate and boreal forests dominated by spruce, pine or beech. Future collection and provision of harmonized soil data from observational and experimental sites is crucial for further testing and adjusting the metric.


Asunto(s)
Ecosistema , Suelo , Benchmarking , Bosques , Nitrógeno , Nutrientes , Suecia , Árboles
6.
Ecol Evol ; 9(20): 11716-11723, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31695881

RESUMEN

AIM: To date, despite their great potential biogeographical regionalization models have been mostly developed on descriptive and empirical bases. This paper aims at applying the beta-diversity framework on a statistically representative data set to analytically test the consistency of the biogeographical regionalization of Italian forests. LOCATION: Italy. TAXON: Vascular plants. METHODS: Forest plant communities were surveyed in 804 plots made in a statistically representative sample of forest communities made by 201 sites of Italian forests across the three biogeographical regions of the country: Alpine, Continental, and Mediterranean. We conducted an ordination analysis and an analysis of beta-diversity, decomposing it into its turnover and nestedness components. RESULTS: Our results provide only partial support to the consistency of the biogeographical regionalization of Italy. While the differences in forest plant communities support the distinction between the Alpine and the other two regions, differences between Continental and Mediterranean regions had lower statistical support. Pairwise beta-diversity and its turnover component are higher between- than within-biogeographical regions. This suggests that different regional species pools contribute to assembly of local communities and that spatial distance between-regions has a stronger effect than that within-regions. MAIN CONCLUSIONS: Our findings confirm a biogeographical structure of the species pools that is captured by the biogeographical regionalization. However, nonsignificant differences between the Mediterranean and Continental biogeographical regions suggest that this biogeographical regionalization is not consistent for forest plant communities. Our results demonstrate that an analytical evaluation of species composition differences among regions using beta-diversity analysis is a promising approach for testing the consistency of biogeographical regionalization models. This approach is recommended to provide support to the biogeographical regionalization used in some environmental conservation polices adopted by EU.

7.
Sci Total Environ ; 687: 610-617, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31220715

RESUMEN

Monitoring of forest condition and tree performance is a long-term activity to provide data, substantiated cause-effects relationships and conclusions for environmental policies and forest management. Within this context the concept of tree and forest health, selection of response and predictor variables and challenges during statistical analyses are addressed. The terms tree and forest health are often used to characterise the performance of trees or the condition of forest ecosystems, however, the actual meanings may differ considerably. For the sake of a more coherent perception of the term health in scientific contexts and taking into account the meaning of disease(s) a more adjusted use of 'health' is recommended. Apart from the role of a working hypothesis, the selection process of meaningful response and predicting parameters is treated. On the response site the focus is on tree-related parameters like radial stem increment, crown condition, and foliar element concentrations. Each parameter reveals problems with specific implications for statistical model building. As drivers chemical properties of deposition, soil solution and soil solid phase, further foliar element concentrations, meteorological and air quality parameters are adduced. Additionally modelled plot-related values derived from external networks can be considered. Multiple regression as one of the core methods calls for unstructured residuals. To find optimal solutions especially in more intensive monitoring programmes with limited numbers of plots and many parameters is a challenge. Longitudinal and time series analyses may offer alternatives and widen the scope. While classical geostatistics may help to control spatial autocorrelation, possibilities to enlarge ecological and climatic gradients due to the inclusion of plots from similar programmes in suitable regions have to be considered as well.


Asunto(s)
Monitoreo del Ambiente , Bosques , Contaminación del Aire , Suelo/química , Árboles
8.
Sci Total Environ ; 618: 941-951, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29146076

RESUMEN

Fire severity, defined as the magnitude of fire effects in an ecosystem, is a key factor to consider in planning management strategies for protecting forests against fire. Although prescribed burning has been used as a fuel reduction tool in forest ecosystems, it is quite limited in the Mediterranean region. Furthermore, little is known about how tree crowns are affected by prescribed underburning aimed at reducing fire severity in conifer stands. As part of an ongoing study to assess the effects of prescribed burning on the tree canopy, litterfall is currently being monitored in a network of experimental plots located in mixed (Pinus nigra and Pinus pinaster) and pure (P. nigra) conifer stands in the Cuenca Mountains (Castilla La Mancha, Spain). A total of 12 study plots (30m×30m) were established in a completely randomized experimental design to determine the effect of burning, with 2 treatments: no burning (control) and burning (i.e. with three replicate plots for each treatment and site). Burning was conducted in May 2016. In each plot, 8 litterfall collectors were installed at regular intervals, according to international protocols (ICP Forests), and all biomass falling into the collectors is being monitored monthly. The specific objective of this study is to assess how prescribed burning affects the rate of generation of foliar and non-foliar litterfall biomass due to the fire. In addition, the Leaf Area Index was estimated before burning and one year later to verify possible changes in the structure of the stands. This information could be used to help minimize the negative impacts of prescribed underburning on litterfall. To our knowledge, this study represents the first attempt to evaluate the effect of prescribed burning on litterfall biomass in Europe.


Asunto(s)
Biomasa , Incendios , Bosques , Pinus , Agricultura Forestal , Región Mediterránea , España
10.
Environ Sci Pollut Res Int ; 24(13): 11919-11939, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-26739991

RESUMEN

Atmospheric deposition of heavy metals (HM) can be determined by use of numeric models, technical devices and biomonitors. Mainly focussing on Germany, this paper aims at evaluating data from deposition modelling and biomonitoring programmes. The model LOTOS-EUROS (LE) yielded data on HM deposition at a spatial resolution of 25 km by 25 km throughout Europe. The European Monitoring and Evaluation Programme (EMEP) provided model calculations on 50 km by 50 km grids. Corresponding data on HM concentration in moss, leaves and needles and soil were derived from the European Moss Survey (EMS), the German Environmental Specimen Bank (ESB) and the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (iCP Forests). The modelled HM deposition and respective concentrations in moss (EMS), leaves and needles (ESB, iCP Forests) and soil (iCP Forests) were investigated for their statistical relationships. Regression equations were applied on geostatistical surface estimations of HM concentration in moss and then the residuals were interpolated by use of kriging interpolation. Both maps were summed up to a map of cadmium (Cd) and lead (Pb) deposition across Germany. Biomonitoring data were strongly correlated to LE than to EMEP. For HM concentrations in moss, the highest correlations were found for the association between geostatistical surface estimations of HM concentration in moss and deposition (LE).


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Alemania , Modelos Teóricos
11.
Sci Total Environ ; 553: 107-119, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26906698

RESUMEN

We evaluated trends (2005-2013) and patterns of dissolved organic nitrogen (DON) and its ratio with dissolved organic carbon (DOC), DOC:DON in atmospheric deposition and soil solution of five Level II plots of the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) in Flanders, Northern Belgium. The primary aim was to confirm positive postulated trends in DON levels and DOC:DON under on-going recovery from acidification. The DON concentrations (0.95-1.41 mg L(-1)) and fluxes (5.6-8.3 kg ha(-1)y(-1)) in throughfall were about twice as high compared to precipitation in the open field (0.40-0.48 mg L(-1), 3.0-3.9 kg ha(-1)y(-1)). Annual soil profile leaching losses of DON varied between 1.2 and 3.7 kg ha(-1)y(-1). The highest soil DON concentrations and fluxes were observed beneath the O horizon (1.84-2.36 mg L(-1), 10.1-12.3 kg ha(-1)y(-1)). Soil solution concentrations and fluxes of DON showed significant increasing trends. Temporarily soil solution DOC:DON rose following an exceptionally long spring drought in 2007, suggesting an effect of drying and rewetting on DOM composition. Further research is needed to test the dependence of DON and DOC:DON on factors such as latitude, forest cover, length of the growing season, hydrology and topography. Nonetheless, even with considerable variation in soil type, level of base saturation, and soil texture in the five included ICP Forests Level II plots, all data revealed a proportionally larger positive response of DON flux than DOC to recovery from acidification.


Asunto(s)
Monitoreo del Ambiente , Bosques , Nitrógeno/análisis , Suelo/química , Bélgica
12.
Mol Ecol ; 23(22): 5628-44, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25277863

RESUMEN

Ectomycorrhizal fungi are major ecological players in temperate forests, but they are rarely used in measures of forest condition because large-scale, high-resolution, standardized and replicated belowground data are scarce. We carried out an analysis of ectomycorrhizas at 22 intensively monitored long-term oak plots, across nine European countries, covering complex natural and anthropogenic environmental gradients. We found that at large scales, mycorrhizal richness and evenness declined with decreasing soil pH and root density, and with increasing atmospheric nitrogen deposition. Shifts in mycorrhizas with different functional traits were detected; mycorrhizas with structures specialized for long-distance transport related differently to most environmental variables than those without. The dominant oak-specialist Lactarius quietus, with limited soil exploration abilities, responds positively to increasing nitrogen inputs and decreasing pH. In contrast, Tricholoma, Cortinarius and Piloderma species, with medium-distance soil exploration abilities, show a consistently negative response. We also determined nitrogen critical loads for moderate (9.5-13.5 kg N/ha/year) and drastic (17 kg N/ha/year) changes in belowground mycorrhizal root communities in temperate oak forests. Overall, we generated the first baseline data for ectomycorrhizal fungi in the oak forests sampled, identified nitrogen pollution as one of their major drivers at large scales and revealed fungi that individually and/or in combination with others can be used as belowground indicators of environmental characteristics.


Asunto(s)
Bosques , Micorrizas/fisiología , Quercus/microbiología , Microbiología del Suelo , Europa (Continente) , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Nitrógeno/química , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Suelo/química , Árboles/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA