Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant J ; 119(4): 2116-2132, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38923048

RESUMEN

Maize (Zea mays L.) is an important crop that has been widely studied for its agronomic and industrial applications and is one of the main classical model organisms for genetic research. Agrobacterium-mediated transformation of immature maize embryos is a commonly used method to introduce transgenes, but a low transformation frequency remains a bottleneck for many gene-editing applications. Previous approaches to enhance transformation included the improvement of tissue culture media and the use of morphogenic regulators such as BABY BOOM and WUSCHEL2. Here, we show that the frequency can be increased using a pVS1-VIR2 virulence helper plasmid to improve T-DNA delivery, and/or expressing a fusion protein between a GROWTH-REGULATING FACTOR (GRF) and GRF-INTERACTING FACTOR (GIF) protein to improve regeneration. Using hygromycin as a selection agent to avoid escapes, the transformation frequency in the maize inbred line B104 significantly improved from 2.3 to 8.1% when using the pVS1-VIR2 helper vector with no effect on event quality regarding T-DNA copy number. Combined with a novel fusion protein between ZmGRF1 and ZmGIF1, transformation frequencies further improved another 3.5- to 6.5-fold with no obvious impact on plant growth, while simultaneously allowing efficient CRISPR-/Cas9-mediated gene editing. Our results demonstrate how a GRF-GIF chimera in conjunction with a ternary vector system has the potential to further improve the efficiency of gene-editing applications and molecular biology studies in maize.


Asunto(s)
Vectores Genéticos , Plantas Modificadas Genéticamente , Transformación Genética , Zea mays , Zea mays/genética , Zea mays/crecimiento & desarrollo , Edición Génica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ADN Bacteriano/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Agrobacterium tumefaciens/genética , Plásmidos/genética
2.
FEBS J ; 291(10): 2191-2208, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38431777

RESUMEN

The essential yeast protein GPN-loop GTPase 1 (Npa3) plays a critical role in RNA polymerase II (RNAPII) assembly and subsequent nuclear import. We previously identified a synthetic lethal interaction between a mutant lacking the carboxy-terminal 106-amino acid tail of Npa3 (npa3ΔC) and a bud27Δ mutant. As the prefoldin-like Bud27 protein participates in ribosome biogenesis and translation, we hypothesized that Npa3 may also regulate these biological processes. We investigated this proposal by using Saccharomyces cerevisiae strains episomally expressing either wild-type Npa3 or hypomorphic mutants (Npa3ΔC, Npa3K16R, and Npa3G70A). The Npa3ΔC mutant fully supports RNAPII nuclear localization and activity. However, the Npa3K16R and Npa3G70A mutants only partially mediate RNAPII nuclear targeting and exhibit a higher reduction in Npa3 function. Cell proliferation in these strains displayed an increased sensitivity to protein synthesis inhibitors hygromycin B and geneticin/G418 (npa3G70A > npa3K16R > npa3ΔC > NPA3 cells) but not to transcriptional elongation inhibitors 6-azauracil, mycophenolic acid or 1,10-phenanthroline. In all three mutant strains, the increase in sensitivity to both aminoglycoside antibiotics was totally rescued by expressing NPA3. Protein synthesis, visualized by quantifying puromycin incorporation into nascent-polypeptide chains, was markedly more sensitive to hygromycin B inhibition in npa3ΔC, npa3K16R, and npa3G70A than NPA3 cells. Notably, high-copy expression of the TIF11 gene, that encodes the eukaryotic translation initiation factor 1A (eIF1A) protein, completely suppressed both phenotypes (of reduced basal cell growth and increased sensitivity to hygromycin B) in npa3ΔC cells but not npa3K16R or npa3G70A cells. We conclude that Npa3 plays a critical RNAPII-independent and previously unrecognized role in translation initiation.


Asunto(s)
Factor 1 Eucariótico de Iniciación , Higromicina B , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Núcleo Celular/metabolismo , Núcleo Celular/genética , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Higromicina B/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo
3.
Microbiol Spectr ; : e0183821, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737625

RESUMEN

In an attempt to identify novel bacterial species, microbiologists have examined a wide range of environmental niches. We describe the serendipitous discovery of a novel gram-negative bacterial species from a different type of extreme niche: a purchased vial of antibiotic. The vial of antibiotic hygromycin B was found to be factory contaminated with a bacterial species, which we designate Pseudomonas hygromyciniae sp. nov. The proposed novel species belongs to the P. fluorescens complex and is most closely related to P. brenneri, P. proteolytica, and P. fluorescens. The type strain Pseudomonas hygromyciniae sp. nov. strain SDM007T (SDM007T) harbors a novel 250 kb megaplasmid which confers resistance to hygromycin B and contains numerous other genes predicted to encode replication and conjugation machinery. SDM007T grows in hygromycin concentrations of up to 5 mg/mL but does not use the antibiotic as a carbon or nitrogen source. While unable to grow at 37°C ruling out its ability to infect humans, it grows and survives at temperatures between 4 and 30°C. SDM007T can infect plants, as demonstrated by the lettuce leaf model, and is highly virulent in the Galleria mellonella infection model but is unable to infect mammalian A549 cells. These findings indicate that commercially manufactured antibiotics represent another extreme environment that may support the growth of novel bacterial species. IMPORTANCE Physical and biological stresses in extreme environments may select for bacteria not found in conventional environments providing researchers with the opportunity to not only discover novel species but to uncover new enzymes, biomolecules, and biochemical pathways. This strategy has been successful in harsh niches such as hot springs, deep ocean trenches, and hypersaline brine pools. Bacteria belonging to the Pseudomonas species are often found to survive in these unusual environments, making them relevant to healthcare, food, and manufacturing industries. Their ability to survive in a variety of environments is mainly due to the high genotypic and phenotypic diversity displayed by this genus. In this study, we discovered a novel Pseudomonas sp. from a desiccated environment of a sealed antibiotic bottle that was considered sterile. A close genetic relationship with its phylogenetic neighbors reiterated the need to use not just DNA-based tools but also biochemical characteristics to accurately classify this organism.

4.
Front Microbiol ; 14: 1159534, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37362932

RESUMEN

Fusarium wilt of bananas (FWB) is seriously affecting the sustainable development of the banana industry and is caused by the devastating soil-borne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). Biological control is a promising strategy for controlling Fusarium wilt in bananas. We previously identified Streptomyces hygroscopicus subsp. hygroscopicus 5-4 with strong antifungal activity against the FWB. The most possible antimicrobial mechanism of strain 5-4 was explored using the metabolomics approach, light microscopy imaging, and transmission electron microscopy (TEM). The membrane integrity and ultrastructure of Foc TR4 was damaged after extract treatment, which was supported by the degradation of mycelium, soluble protein content, extracellular reducing sugar content, NADH oxidase activity, malondialdehyde content, mitochondrial membrane potential, and mitochondrial respiratory chain complex enzyme activity. The extracts of strain 5-4 cultivated at different times were characterized by a liquid chromatography-mass spectrometer (LC-MS). 647 known metabolites were detected in the extracts of strains 5-4. Hygromycin B, gluten exorphin B4, torvoside G, (z)-8-tetradecenal, piperitoside, sarmentosin, pubescenol, and other compounds were the main differential metabolites on fermentation culture for 7 days. Compared with strain 5-4 extracts, hygromycin B inhibited the mycelial growth of Foc TR4, and the EC50 concentration was 7.4 µg/mL. These results showed that strain 5-4 could destroy the cell membrane of Foc TR4 to inhibit the mycelial growth, and hygromycin B may be the key antimicrobial active metabolite. Streptomyces hygroscopicus subsp. hygroscopicus 5-4 might be a promising candidate strain to control the FWB and provide a scientific basis for the practical application of hygromycin B as a biological control agent.

5.
Food Chem ; 383: 132382, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35168044

RESUMEN

A molecularly imprinted electrochemical sensor (MIES) modified with Cu-MOF and Ti3C2Tx was successfully prepared for the detection of hygromycin B in food. According to the pH sensitive property of reversible borate ester bonds, a molecularly imprinted polymers (MIP) were constructed on the modified gold electrode (GE) surface by electropolymerization to realize the controllable elution and adsorption of template molecules. Cu-MOF with large specific surface area and Ti3C2Tx with excellent electrical conductivity cooperate to improve the overall analytical performance of MIES. The morphology and electrochemical performance of the sensor were evaluated. Under the optimal experimental conditions, the method showed superior selectivity to hygromycin B with a linear range of 5 × 10-9-5 × 10-6 M and a detection limit of 1.92 × 10-9 M (S/N = 3). The detection results of this method are in good agreement with HPLC-MS/MS, which proves that the method has reliable practicability and accuracy.


Asunto(s)
Técnicas Biosensibles , Impresión Molecular , Boratos , Técnicas Electroquímicas/métodos , Electrodos , Ésteres , Higromicina B , Límite de Detección , Impresión Molecular/métodos , Espectrometría de Masas en Tándem
6.
J Microbiol Methods ; 189: 106313, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34453992

RESUMEN

Dwarf bunt of wheat caused by Tilletia controversa Kühn has been identified an international quarantine disease, which replace the grain material into millions of teliospores. Agrobacterium tumefaciens-mediated transformation (ATMT) system is a powerful tool for fungi transformation with significant advantages of simple operation, high efficiency, and genetic stability of transformants. In this study, we constructed ATMT system for T. controversa. All the transformants were tested using Acetosyringone (AS) concentration at 150 µmol/l, hygromycin B at 25 µg/ml, 1 × 106 T. controversa hypha cells/ml, A. tumefaciens with OD600 of 0.5 co-cultivation at 16 °C for 48 h and culture was incubated at 16 °C for 20 days. Using the ATMT method, we cultivated 8 generations of transformants on complete medium (CM) containing hygromycin B antibiotic and validated by PCR, which indicate that T-DNA had been successfully inserted into each of T. controversa transformants. In addition, thermal asymmetric interlaced PCR (TAIL-PCR) evaluated the Ti element inserts were at random sites in the fungal genome. Thus, ATMT approach is an efficient tool for insertional mutagenesis of T. controversa.


Asunto(s)
Agrobacterium tumefaciens/genética , Basidiomycota/genética , ADN Bacteriano/genética , Transformación Genética , Genoma Fúngico , Mutagénesis Insercional , Enfermedades de las Plantas/microbiología , Triticum/microbiología
7.
Bioengineering (Basel) ; 8(3)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806931

RESUMEN

Recent advances in synthetic genomics launched the ambitious goal of generating the first synthetic designer eukaryote, based on the model organism Saccharomyces cerevisiae (Sc2.0). Excitingly, the Sc2.0 project is now nearing its completion and SCRaMbLE, an accelerated evolution tool implemented by the integration of symmetrical loxP sites (loxPSym) downstream of almost every non-essential gene, is arguably the most applicable synthetic genome-wide alteration to date. The SCRaMbLE system offers the capability to perform rapid genome diversification, providing huge potential for targeted strain improvement. Here we describe how SCRaMbLE can evolve a semi-synthetic yeast strain housing the synthetic chromosome II (synII) to generate hygromycin B resistant genotypes. Exploiting long-read nanopore sequencing, we show that all structural variations are due to recombination between loxP sites, with no off-target effects. We also highlight a phenomenon imposed on SCRaMbLE termed "essential raft", where a fragment flanked by a pair of loxPSym sites can move within the genome but cannot be removed due to essentiality restrictions. Despite this, SCRaMbLE was able to explore the genomic space and produce alternative structural compositions that resulted in an increased hygromycin B resistance in the synII strain. We show that among the rearrangements generated via SCRaMbLE, deletions of YBR219C and YBR220C contribute to hygromycin B resistance phenotypes. However, the hygromycin B resistance provided by SCRaMbLEd genomes showed significant improvement when compared to corresponding single deletions, demonstrating the importance of the complex structural variations generated by SCRaMbLE to improve hygromycin B resistance. We anticipate that SCRaMbLE and its successors will be an invaluable tool to predict and evaluate the emergence of antibiotic resistance in yeast.

8.
Biotechnol Lett ; 43(1): 213-222, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32851464

RESUMEN

OBJECTIVES: To determine the effect of sea salt on the resistance of Trichoderma harzianum LZDX-32-08 to hygromycin B and speculate the possible mechanisms involved via transcriptome analysis. RESULTS: Sea salt addition in media to simulate marine environment significantly increased the tolerance of marine-derived fungus Trichoderma harzianum LZDX-32-08 to hygromycin B from 40 to 500 µg/ml. Meanwhile, sea salt addition also elicited the hygromycin B resistance of 5 other marine or terrestrial fungi. Transcriptomic analyses of T. harzianum cultivated on PDA, PDA supplemented with sea salt and PDA with both sea salt and hygromycin B revealed that genes coding for P-type ATPases, multidrug resistance related transporters and acetyltransferases were up-regulated, while genes coding for Ca2+/H+ antiporter and 1,3-glucosidase were down-regulated, indicating probable increased efflux and inactivation of hygromycin B as well as enhanced biofilm formation, which could jointly contribute to the drug resistance. CONCLUSIONS: Marine environment or high ion concentration in the environment could be an importance inducer for antifungal resistance. Possible mechanisms and related key genes were proposed for understanding the molecular basis and overcoming this resistance.


Asunto(s)
Farmacorresistencia Fúngica/efectos de los fármacos , Higromicina B/farmacología , Hypocreales/efectos de los fármacos , Cloruro de Sodio/farmacología , Hypocreales/genética , Hypocreales/metabolismo , Transcriptoma/efectos de los fármacos
9.
Artículo en Inglés | MEDLINE | ID: mdl-33062286

RESUMEN

BACKGROUND: Two reference strains have been sequenced from the mushroom Coprinopsis cinerea, monokaryon Okayama 7/#130 (OK130) and the self-compatible homokaryon AmutBmut. An adenine-auxotrophy in OK130 (ade8-1) and a para-aminobenzoic acid (PABA)-auxotrophy in AmutBmut (pab1-1) offer selection markers for transformations. Of these two strains, homokaryon AmutBmut had been transformed before to PABA-prototrophy and with the bacterial hygromycin resistance marker hph, respectively. RESULTS: Gene ade8 encodes a bifunctional enzyme with an N-terminal glycinamide ribonucleotide synthase (GARS) and a C-terminal aminoimidazole ribonucleotide synthase (AIRS) domain required for steps 2 and 5 in the de novo biosynthesis of purines, respectively. In OK130, a missense mutation in ade8-1 rendered residue N231 for ribose recognition by the A loop of the GARS domain into D231. The new ade8 + vector pCcAde8 complements the auxotrophy of OK130 in transformations. Transformation rates with pCcAde8 in single-vector and co-transformations with ade8 +-selection were similarly high, unlike for trp1 + plasmids which exhibit suicidal feedback-effects in single-vector transformations with complementation of tryptophan synthase defects. As various other plasmids, unselected pCcAde8 helped in co-transformations of trp1 strains with a trp1 +-selection vector to overcome suicidal effects by transferred trp1 +. Co-transformation rates of pCcAde8 in OK130 under adenine selection with nuclear integration of unselected DNA were as high as 80% of clones. Co-transformation rates of expressed genes reached 26-42% for various laccase genes and up to 67% with lcc9 silencing vectors. The bacterial gene hph can also be used as another, albeit less efficient, selection marker for OK130 transformants, but with similarly high co-transformation rates. We further show that the pab1-1 defect in AmutBmut is due to a missense mutation which changed the conserved PIKGT motif for chorismate binding in the C-terminal PabB domain to PIEGT in the mutated 4-amino-4-deoxychorismate synthase. CONCLUSIONS: ade8-1 and pab1-1 auxotrophic defects in C. cinerea reference strains OK130 and AmutBmut for complementation in transformation are described. pCcAde8 is a new transformation vector useful for selection in single and co-transformations of the sequenced monokaryon OK130 which was transformed for the first time. The bacterial gene hph can also be used as an additional selection marker in OK130, making in combination with ade8 + successive rounds of transformation possible.

10.
Gene X ; 5: 100028, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32550555

RESUMEN

Post-fermentation fungal biomass waste provides a viable source for chitin. Cell wall chitin of filamentous fungi, and in particular its de-N-acetylated derivative chitosan, has a wide range of commercial applications. Although the cell wall of filamentous fungi comprises 10-30% chitin, these yields are too low for cost-effective production. Therefore, we aimed to identify the genes involved in increased chitin deposition by screening a collection of UV-derived cell wall mutants in Aspergillus niger. This screen revealed a mutant strain (RD15.4#55) that showed a 30-40% increase in cell wall chitin compared to the wild type. In addition to the cell wall chitin phenotype, this strain also exhibited sensitivity to SDS and produces an unknown yellow pigment. Genome sequencing combined with classical genetic linkage analysis identified two mutated genes on chromosome VII that were linked with the mutant phenotype. Single gene knockouts and subsequent complementation analysis revealed that an 8 bp deletion in NRRL3_09595 is solely responsible for the associated phenotypes of RD15.4#55. The mutated gene, which was named cwcA (cell wall chitin A), encodes an orthologue of Saccharomyces cerevisiae Bypass of ESS1 (BYE1), a negative regulator of transcription elongation. We propose that this conserved fungal protein is involved in preventing cell wall integrity signaling under non-inducing conditions, where loss of function results in constitutive activation of the cell wall stress response pathway, and consequently leads to increased chitin content in the mutant cell wall.

11.
Protoplasma ; 257(2): 607-611, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31741062

RESUMEN

In this study, we have shown the applicability of electroporation and hygromycin B as a convenient selectable marker for stable nuclear transformation of Coccomyxa subellipsoidea C-169. Since it is the first sequenced eukaryotic microorganism from polar environment, this offers unique opportunities to study adaptation mechanisms to cold.


Asunto(s)
Chlorophyta/química , Electroporación/métodos , Transformación Genética/genética
12.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 9): 599-607, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31475927

RESUMEN

Hygromycin B (HygB) is one of the aminoglycoside antibiotics, and it is widely used as a reagent in molecular-biology experiments. Two kinases are known to inactivate HygB through phosphorylation: aminoglycoside 7''-phosphotransferase-Ia [APH(7'')-Ia] from Streptomyces hygroscopicus and aminoglycoside 4-phosphotransferase-Ia [APH(4)-Ia] from Escherichia coli. They phosphorylate the hydroxyl groups at positions 7'' and 4 of the HygB molecule, respectively. Previously, the crystal structure of APH(4)-Ia was reported as a ternary complex with HygB and 5'-adenylyl-ß,γ-imidodiphosphate (AMP-PNP). To investigate the differences in the substrate-recognition mechanism between APH(7'')-Ia and APH(4)-Ia, the crystal structure of APH(7'')-Ia complexed with HygB is reported. The overall structure of APH(7'')-Ia is similar to those of other aminoglycoside phosphotransferases, including APH(4)-Ia, and consists of an N-terminal lobe (N-lobe) and a C-terminal lobe (C-lobe). The latter also comprises a core and a helical domain. Accordingly, the APH(7'')-Ia and APH(4)-Ia structures fit globally when the structures are superposed at three catalytically important conserved residues, His, Asp and Asn, in the Brenner motif, which is conserved in aminoglycoside phosphotransferases as well as in eukaryotic protein kinases. On the other hand, the phosphorylated hydroxyl groups of HygB in both structures come close to the Asp residue, and the HygB molecules in each structure lie in opposite directions. These molecules were held by the helical domain in the C-lobe, which exhibited structural differences between the two kinases. Furthermore, based on the crystal structures of APH(7'')-Ia and APH(4)-Ia, some mutated residues in their thermostable mutants reported previously were located at the same positions in the two enzymes.


Asunto(s)
Antibacterianos/química , Higromicina B/química , Kanamicina Quinasa/química , Streptomyces/enzimología , Adenilil Imidodifosfato/química , Secuencias de Aminoácidos/genética , Aminoglicósidos/química , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Escherichia coli/metabolismo , Kanamicina Quinasa/genética , Kanamicina Quinasa/metabolismo , Fosforilación , Dominios Proteicos , Especificidad por Sustrato
13.
Protist ; 170(1): 52-63, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30576875

RESUMEN

Volvox carteri is an excellent model for investigating the evolution of multicellularity and cell differentiation, and the rate of future progress with this system will depend on improved molecular genetic tools. Several selectable markers for nuclear transformation of V. carteri have been developed, including the nitrate reductase (nitA) gene, but it would be useful to have additional markers to multiplex transgenes in this species. To further facilitate molecular genetic analyses of V. carteri, we developed two new selectable markers that provide rapid, easily selected, and stable resistance to the antibiotics hygromycin and blasticidin. We generated constructs with Volvox-specific regulatory sequences and codon-optimized hygromycin (VcHyg) and blasticidin (VcBlast) resistance genes from Coccidioides posadasii and Bacillus cereus, respectively. With these constructs, transformants were obtained via biolistic bombardment at rates of 0.5-13 per million target cells bombarded. Antibiotic-resistant survivors were readily isolated 7days post bombardment. VcHyg and VcBlast transgenes and transcripts were detected in transformants. Co-transformation rates using the VcHyg or VcBlast markers with unselected genes were comparable to those obtained with nitA. These results indicate that the pVcHyg and pVcBlast plasmids are highly efficient and convenient for transforming and co-transforming a broad range of V. carteri strains.


Asunto(s)
Antibacterianos/farmacología , Cinamatos/farmacología , Farmacorresistencia Microbiana/genética , Higromicina B/análogos & derivados , Transformación Genética/genética , Volvox/genética , Bacillus cereus/genética , Coccidioides/genética , Genes Bacterianos/genética , Genes Fúngicos/genética , Marcadores Genéticos/genética , Higromicina B/farmacología , Microorganismos Modificados Genéticamente/genética , Nucleósidos/farmacología , Transformación Genética/efectos de los fármacos , Volvox/efectos de los fármacos
14.
Plasmid ; 101: 1-9, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30465791

RESUMEN

An ability to synthesize extracellular enzymes degrading a wide spectrum of plant and algae polymeric substrates makes many fungi relevant for biotechnology. The terrestrial thermophilic and marine fungal isolates capable of plant and algae degradation have been tested for antibiotic resistance for their possible use in a new genetic transformation system. Plasmids encoding the hygromycin B phosphotransferase (hph) under the control of the cauliflower mosaic virus 35S promoter, the trpC gene promoter of Aspergillus nidulans, and the Aureobasidium pullulans TEF gene promoter were delivered into the fungal cells by electroporation. The effectiveness of different promoters was compared by transformation and growth of Thermothelomyces thermophila (formerly Myceliophthora thermophila) on the selective medium and by real-time PCR analysis. A highly efficient transformation was observed at an electric-pulse of 8.5 kV/cm by using 10 µg of DNA per 1 × 105 conidia. Although all promoters were capable of hph expression in the Th. thermophila cells, the trpC promoter provided the highest level of hygromycin resistance. We further successfully applied plant binary vector pPZP for co-transformation of hph gene and enhanced green fluorescent protein gene that confirmed this transformation system could be used as an appropriate tool for gene function studies and the expression of heterologous proteins in micromycetes.


Asunto(s)
Organismos Acuáticos/genética , Plásmidos/metabolismo , Saccharomycetales/genética , Esporas Fúngicas/genética , Transformación Genética , Organismos Acuáticos/clasificación , Organismos Acuáticos/efectos de los fármacos , Organismos Acuáticos/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Caulimovirus/genética , Caulimovirus/metabolismo , Cinamatos/farmacología , Electroporación/métodos , Calor , Higromicina B/análogos & derivados , Higromicina B/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Filogenia , Plásmidos/química , Regiones Promotoras Genéticas , Federación de Rusia , Saccharomycetales/clasificación , Saccharomycetales/efectos de los fármacos , Saccharomycetales/metabolismo , Agua de Mar/microbiología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/metabolismo
15.
J Microbiol Methods ; 152: 148-153, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30071256

RESUMEN

Lack of an efficient transformation system has hampered the molecular breeding of Agaricus bisporus. Here, we describe a highly efficient Agrobacterium-mediated transformation system for A. bisporus using foxtail millet (Setaria italica L. Beauv) grains as cultivation and infection media. Mycelium-millet complexes were prepared for co-culture and treated with ultrasonication for 10 s to improve infection efficiency. After a 72-h culture period, the newly grown mycelium-surrounded millet grain was transferred to selection medium supplemented with 200 µg/mL cefotaxime and 15 µg/mL hygromycin B (hyg) to screen positive transformants. Putative transformants were analyzed for the presence of the hyg gene by polymerase chain reaction and Southern blotting. Expression of eGFP in A. bisporus transformants was detected by fluorescence imaging, and the ß-glucuronidase (GUS) protein was detected by histochemical staining. Our protocol resulted in an average 53.85% transformation frequency, and over 85% of the transformants tested remained mitotically stable, even after five successive rounds of subculturing. A feasible method for A. bisporus mushroom transformation using foxtail millet as an innovative culture medium was developed, which will benefit future functional genetic studies of this mushroom.


Asunto(s)
Agaricus/genética , Agrobacterium tumefaciens/genética , Mijos , Transformación Genética , Granos Enteros , Southern Blotting , Técnicas de Cocultivo , Medios de Cultivo , Vectores Genéticos , Inestabilidad Genómica , Glucuronidasa/análisis , Glucuronidasa/genética , Proteínas Fluorescentes Verdes/genética , Higromicina B , Micelio , Imagen Óptica , Reacción en Cadena de la Polimerasa , Setaria (Planta) , Ultrasonido
16.
J Appl Microbiol ; 123(3): 724-731, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28667709

RESUMEN

AIMS: Agrobacterium tumefaciens-mediated transformation (AtMT) is an effective method for generation of entomopathogenic Beauveria bassiana transformants. However, some strains grow on the selective medium containing hygromycin B (HygB), which reduces the selection efficiency of the putative transformants. In this work, a relationship between HygB resistance gene promoter and AtMT efficiency was investigated to improve the transformant selection. METHODS AND RESULTS: Ten B. bassiana isolates were grown on 800 µg ml-1 HygB medium, but only JEF-006, -007 and -013 showed susceptibility to the antibiotics. Particularly, JEF-007 showed the most dose-dependent susceptibility. Two different Ti-Plasmids, pCeg (gpdA promoter based) and pCambia-egfp (CaMV 35S promoter based), were constructed to evaluate the promoters on the expression of HygB resistance gene (hph) at 100, 150 and 200 µg ml-1 HygB medium. Eight days after the transformation, wild type, AtMT/pCeg and AtMT/pCambia-egfp colonies were observed on 100 µg ml-1 HygB, but significantly larger numbers of colonies were counted on AtMT/pCeg plates. At higher HygB concentration (150 µg ml-1 ), only AtMT/pCeg colonies were further observed, but very few colonies were observed on the wild type and AtMT/pCambia-egfp plates. Putative transformants were subjected to PCR, RT-PCR and qRT-PCR to investigate the T-DNA insertion rate and gene expression level. Consequently, >80% of colonies showed successful AtMT transformation, and the hph expression level in AtMT/pCeg colonies was higher than that of AtMT/pCambia-egfp colonies. CONCLUSIONS: In the HygB-susceptible B. bassianaJEF-007, gpdA promoter works better than CaMV 35S promoter in the expression of HygB resistance gene at 150 µg ml-1 HygB, consequently improving the selection efficiency of putative transformants. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide useful information for determining AtMT effectiveness in B. bassiana isolates, particularly antibiotic susceptibility and the role of promoters.


Asunto(s)
Agrobacterium tumefaciens/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Beauveria/efectos de los fármacos , Beauveria/genética , Higromicina B/farmacología , Transformación Genética , Agrobacterium tumefaciens/metabolismo , Proteínas Bacterianas/metabolismo , Beauveria/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Farmacorresistencia Bacteriana , Expresión Génica , Vectores Genéticos/genética , Vectores Genéticos/metabolismo
17.
Biotechnol Biofuels ; 10: 2, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28066508

RESUMEN

BACKGROUND: Yarrowia lipolytica is an ascomycete yeast used in biotechnological research for its abilities to secrete high concentrations of proteins and accumulate lipids. Genetic tools have been made in a variety of backgrounds with varying similarity to a comprehensively sequenced strain. RESULTS: We have developed a set of genetic and molecular tools in order to expand capabilities of Y. lipolytica for both biological research and industrial bioengineering applications. In this work, we generated a set of isogenic auxotrophic strains with decreased non-homologous end joining for targeted DNA incorporation. Genome sequencing, assembly, and annotation of this genetic background uncovers previously unidentified genes in Y. lipolytica. To complement these strains, we constructed plasmids with Y. lipolytica-optimized superfolder GFP for targeted overexpression and fluorescent tagging. We used these tools to build the "Yarrowia lipolytica Cell Atlas," a collection of strains with endogenous fluorescently tagged organelles in the same genetic background, in order to define organelle morphology in live cells. CONCLUSIONS: These molecular and isogenetic tools are useful for live assessment of organelle-specific protein expression, and for localization of lipid biosynthetic enzymes or other proteins in Y. lipolytica. This work provides the Yarrowia community with tools for cell biology and metabolism research in Y. lipolytica for further development of biofuels and natural products.

18.
J Microbiol Methods ; 131: 148-155, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27789314

RESUMEN

An Agrobacterium-mediated genetic transformation system for the rice false smut fungus Ustilaginoidea virens was developed using conidia as recipients. A binary vector, pCAMBIA1301-PgpdA-GUS-TtrpC, was constructed. The gpdA promoter (PgpdA) from Aspergillus nidulans was used to drive the expression of the ß-glucuronidase (GUS) gene which enabled GUS activity visualization. The conidia transformation efficiency reached approximately 110 to 250 transformants per 1×105 conidia. Based on the analysis made on five successive generations of subcultures and PCR, the pCAMBIA1301-GUS cassette had integrated into the genomes of all transformants and clearly showed mitotic stability. The novel reporter vector constructed will promote the functional characterization of genes and the construction of genetically engineered strains of this important fungus.


Asunto(s)
Ingeniería Genética/métodos , Glucuronidasa/genética , Hypocreales/genética , Oryza/microbiología , Transformación Genética , Agrobacterium tumefaciens/genética , Aspergillus nidulans/genética , Técnicas de Cocultivo , ADN de Hongos , Regulación de la Expresión Génica , Genes Fúngicos/genética , Vectores Genéticos , Higromicina B , Hypocreales/patogenicidad , Fenotipo , Enfermedades de las Plantas/microbiología , Plásmidos/genética , Esporas Fúngicas/genética
19.
World J Microbiol Biotechnol ; 32(7): 106, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27263001

RESUMEN

Botryosphaeria dothidea is a severe causal agent of die-back and cankers of many woody plants and causes great losses in many regions. The pathogenic mechanism of this pathogen has not been well explored due to lack of mutants and genetic information. In this study, we developed an Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for B. dothidea protoplasts using vector pBHt2 containing the hph gene as a selection marker under the control of trp C promoter. Using this protocol we successfully generated the B. dothidea transformants with efficiency about 23 transformants per 10(5) protoplasts. This is the first report of genetic transformation of B. dothidea via ATMT and this protocol provides an effective tool for B. dothidea genome manipulation, gene identification and functional analysis.


Asunto(s)
Agrobacterium tumefaciens/genética , Saccharomycetales/genética , Agrobacterium tumefaciens/metabolismo , ADN Bacteriano/genética , ADN de Hongos/genética , Vectores Genéticos/genética , Higromicina B/farmacología , Pruebas de Sensibilidad Microbiana , Regiones Promotoras Genéticas , Protoplastos , Saccharomycetales/efectos de los fármacos , Saccharomycetales/metabolismo , Transformación Genética
20.
Plant Mol Biol ; 89(6): 577-88, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26415870

RESUMEN

The aminoglycoside antibiotic hygromycin B (Hyg) inhibits prokaryotic, chloroplast and mitochondrial protein synthesis. Because of the toxic effect of Hyg on plant cells, the HPT gene, encoding hygromycin phosphotransferase, has become one of the most widely used selectable markers in plant transformation. Yet the mechanism behind Hyg-induced cell lethality in plants is not clearly understood. In this study, we aimed to decipher this mechanism. With Hyg treatment, rice calli exhibited cell death, and rice seedlings showed severe growth defects, leaf chlorosis and leaf shrinkage. Rice seedlings also exhibited severe lipid peroxidation and protein carbonylation, for oxidative stress damage at the cellular level. The production of reactive oxygen species such as O2(·-), H2O2 and OH(·) was greatly induced in rice seedlings under Hyg stress, and pre-treatment with ascorbate increased resistance to Hyg-induced toxicity indicating the existence of oxidative stress. Overexpression of mitochondrial Alternative oxidase1a gene without HPT selection marker in rice enhanced tolerance to Hyg and attenuated the degradation of protein content, whereas the rice plastidial glutathione reductase 3 mutant showed increased sensitivity to Hyg. These results demonstrate that Hyg-induced cell lethality in rice is not only due to the inhibition of protein synthesis but also mediated by oxidative stress.


Asunto(s)
Higromicina B/toxicidad , Oryza/efectos de los fármacos , Antibacterianos/toxicidad , Muerte Celular/efectos de los fármacos , Genes de Plantas , Glutatión Reductasa/genética , Proteínas Mitocondriales/genética , Mutación , Oryza/citología , Oryza/metabolismo , Estrés Oxidativo/efectos de los fármacos , Oxidorreductasas/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Plantones/citología , Plantones/efectos de los fármacos , Plantones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA