Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros











Intervalo de año de publicación
2.
Biology (Basel) ; 13(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38666814

RESUMEN

Olindiid freshwater jellyfishes of the genus Craspedacusta Lankester, 1880 are native to eastern Asia; however, some species within the genus have been introduced worldwide and are nowadays present in all continents except Antarctica. To date, there is no consensus regarding the taxonomy within the genus Craspedacusta due to the morphological plasticity of the medusa stages. The species Craspedacusta sowerbii Lankester, 1880 was first recorded in Italy in 1946, and until 2017, sightings of the jellyfish Craspedacusta were reported for 40 water bodies. Here, we shed new light on the presence of the freshwater jellyfishes belonging to the genus Craspedacusta across the Italian peninsula, Sardinia, and Sicily. First, we report 21 new observations of this non-native taxon, of which eighteen refer to medusae sightings, two to environmental DNA sequencing, and one to the finding of polyps. Then, we investigate the molecular diversity of collected Craspedacusta specimens, using a Bayesian analysis of sequences of the mitochondrial gene encoding for Cytochrome c Oxidase Subunit I (mtDNA COI). Our molecular analysis shows the presence of two distinctive genetic lineages: (i) a group that comprises sequences obtained from populations ranging from central to northern Italy; (ii) a group that comprises three populations from northern Italy-i.e., those from the Lake Levico, the Lake Santo of Monte Terlago, and the Lake Endine-and the single known Sicilian population. We also report for the first time a mtDNA COI sequence obtained from a Craspedacusta medusa collected in Spain.

3.
Mitochondrial DNA B Resour ; 9(4): 415-418, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586513

RESUMEN

The species Monoserius pennarius (Linnaeus, 1758), is particularly abundant in the tropical Indo-West Pacific east of Sri Lanka, yet very limited genetic information exists for this species. Here, we report the assembled-linear mitochondrial genome of M. pennarius collected from the East China Sea. The 15,197 bp mitogenome contains 13 protein-coding genes (PCGs), two tRNA genes, and two rRNA genes. Notably, the gene order in this mitogenome differs from that of other hydrozoans within the same taxonomic order. Phylogenetic analysis, based on 13 concatenated mitochondrial PCGs, recovered M. pennarius as a sister of Nemalecium lighti (Hargitt, 1924), outside the other Leptothecata hydrozoans, suggesting paraphyly of Leptothecata. The mitogenome of M. pennarius, serving as the first publicly available for the family Aglaopheniidae, holds foreseeable value for investigating Leptothecata evolution.

4.
Toxicon ; 237: 107556, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072317

RESUMEN

Cnidarians thriving in biofouling communities on aquaculture net pens represent a significant health risk for farmed finfish due to their stinging cells. The toxins coming into contact with the fish, during net cleaning, can adversely affect their behavior, welfare, and survival, with a particularly serious health risk for the gills, causing direct tissue damage such as formation of thrombi and increasing risks of secondary infections. The hydroid Ectopleura larynx is one of the most common fouling organisms in Northern Europe. However, despite its significant economic, environmental, and operational impact on finfish aquaculture, biological information on this species is scarce and its venom composition has never been investigated. In this study, we generated a whole transcriptome of E. larynx, and identified its putative expressed venom toxin proteins (predicted toxin proteins, not functionally characterized) based on in silico transcriptome annotation mining and protein sequence analysis. The results uncovered a broad and diverse repertoire of putative toxin proteins for this hydroid species. Its toxic arsenal appears to include a wide and complex selection of toxin proteins, covering a large panel of potential biological functions that play important roles in envenomation. The putative toxins identified in this species, such as neurotoxins, GTPase toxins, metalloprotease toxins, ion channel impairing toxins, hemorrhagic toxins, serine protease toxins, phospholipase toxins, pore-forming toxins, and multifunction toxins may cause various major deleterious effects in prey, predators, and competitors. These results provide valuable new insights into the venom composition of cnidarians, and venomous marine organisms in general, and offer new opportunities for further research into novel and valuable bioactive molecules for medicine, agronomics and biotechnology.


Asunto(s)
Incrustaciones Biológicas , Hidrozoos , Toxinas Biológicas , Animales , Ponzoñas , Proteínas , Transcriptoma
5.
PeerJ ; 11: e16265, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077448

RESUMEN

Planktonic lifestyle of polyps in representatives of Margelopsidae are very different from all other species in the hydrozoan clade Aplanulata. Their evolutionary origin and phylogenetic position have been the subject of significant speculation. A recent molecular study based only on COI data placed Margelopsidae as a sister group to all Aplanulata, an unexpected result because margelopsid morphology suggests affiliation with Tubulariidae or Corymorphidae. Here we used multigene analyses, including nuclear (18S rRNA and 28S rRNA) and mitochondrial (16S rRNA and COI) markers of the hydroid stage of the margelopsid species Margelopsis haeckelii and the medusa stage of Margelopsis hartlaubii to resolve their phylogenetic position with respect to other hydrozoans. Our data provide strong evidence that M. haeckelii, the type species of Margelopsis, is a member of the family Corymorphidae. In contrast, M. hartlaubii is sister to Plotocnide borealis, a member of Boreohydridae. These results call into question the validity of the genus Margelopsis and the family Margelopsidae. The systematic position of M. haeckelii is discussed in light of the phylogeny of Corymorphidae.


Asunto(s)
Hidrozoos , Animales , Filogenia , ARN Ribosómico 16S , Hidrozoos/anatomía & histología , Evolución Biológica , ARN Ribosómico 18S/genética
6.
Front Cell Dev Biol ; 11: 1284904, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38078002

RESUMEN

Introduction: Periodic organ arrangements occur during growth and development and are widespread in animals and plants. In bilaterian animals, repetitive organs can be interpreted as being periodically arranged along the two-dimensional space and defined by two body axes; on the other hand, in radially symmetrical animals and plants, organs are arranged in the three-dimensional space around the body axis and around plant stems, respectively. The principles of periodic organ arrangement have primarily been investigated in bilaterians; however, studies on this phenomenon in radially symmetrical animals are scarce. Methods: In the present study, we combined live imaging, quantitative analysis, and mathematical modeling to elucidate periodic organ arrangement in a radially symmetrical animal, Coryne uchidai (Cnidaria, Hydrozoa). Results: The polyps of C. uchidai simultaneously formed multiple tentacles to establish a regularly angled, ring-like arrangement with radial symmetry. Multiple rings periodically appeared throughout the body and mostly maintained symmetry. Furthermore, we observed polymorphisms in symmetry type, including tri-, tetra-, and pentaradial symmetries, as individual variations. Notably, the types of radial symmetry were positively correlated with polyp diameter, with a larger diameter in pentaradial polyps than in tetra- and triradial ones. Our mathematical model suggested the selection of size-correlated radial symmetry based on the activation-inhibition and positional information from the mouth of tentacle initiation. Discussion: Our established quantification methods and mathematical model for tentacle arrangements are applicable to other radially symmetrical animals, and will reveal the widespread association between size-correlated symmetry and periodic arrangement principles.

7.
Zool Stud ; 62: e49, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965300

RESUMEN

The hydrozoan family Eirenidae is known scientifically for its morphological plasticity and challenges in species identification. We used an integrative taxonomic approach based on morphological, molecular and life history evidence to systematically assess field-collected medusae of Eirene menoni Kramp 1953 and captive raised polyps of both E. menoni and E. lacteoides Kubota and Horita 1992. Following morphological review, we updated the genus description to include the presence of rudimentary bulbs (warts) on the ring canal in at least eight of the 24 valid Eirene species. We propose the potential for the mature E. menoni hydrotheca to develop into a gonotheca. However, this proposal will require additional study for verification. We provide validated distribution records from the Indo-Pacific Ocean for E. menoni,and updated collection records for E. lacteoides from the Yellow and East China Seas, and public aquaria-cultured specimens from Japan and Hawaii, using cytochrome c oxidase I (COI) sequences that we generated and compared with those from GenBank. The COI gene reliably separated four species, each forming a monophyletic clade with strong bootstrap support and low mean intraspecific molecular divergences (≤ 1%) within clades. However, some of the deeper nodes of the tree remained poorly resolved, and our analysis failed to demonstrate monophyly among eirenid genera Eirene and Tima. Our integrative taxonomic approach is essential in confirming species identity within the family Eirenidae and genus Eirene,and we have also identified a likely range expansion of E. lacteoides to Hawaii.

8.
Biodivers Data J ; 11: e114262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034021

RESUMEN

Acanthophoraspicifera, a red alga considered an alien species, was discovered for the first time on the Pacific coast of Mexico in 2006 from a locality inside La Paz Bay, Gulf of California. Since then, more records have shown its presence, 17 localities having been added up to 2015. A two-year field study (2020-2022) visiting 31 sites along the coast of La Paz Bay, complemented with data from literature and citizen science, resulted in a database of 709 entries that spans the data from 2004 to 2023. These data showed a distribution that goes from Punta Coyote, close to Boca Grande, the northern entrance to the Bay to Playa Tecolote in the south, more than 100 km of coastline, including Espiritu Santo Archipelago, an area considered a natural reserve since 2007. Anthropogenic activity and environmental variables did not present statistical differences that explain A.spicifera spreading. It represents a naturalised alien species without evidence of a negative impact. Still, it soon could acquire the status of invasive species together with its epibionts Bryozoa and Hydrozoa detected in this study.

9.
Front Neural Circuits ; 17: 1235915, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37746552

RESUMEN

Background: As the sister group to all Bilateria, representatives of the phylum Cnidaria (sea anemones, corals, jellyfishes, and hydroids) possess a recognizable and well-developed nervous system and have attracted considerable attention over the years from neurobiologists and evo-devo researchers. Despite a long history of nervous system investigation in Cnidaria, most studies have been performed on unitary organisms. However, the majority of cnidarians are colonial (modular) organisms with unique and specific features of development and function. Nevertheless, data on the nervous system in colonial cnidarians are scarce. Within hydrozoans (Hydrozoa and Cnidaria), a structurally "simple" nervous system has been described for Hydra and zooids of several colonial species. A more complex organization of the nervous system, closely related to the animals' motile mode of life, has been shown for the medusa stage and a few siphonophores. Direct evidence of a colonial nervous system interconnecting zooids of a hydrozoan colony has been obtained only for two species, while it has been stated that in other studied species, the coenosarc lacks nerves. Methods: In the present study, the presence of a nervous system in the coenosarc of three species of colonial hydroids - the athecate Clava multicornis, and thecate Dynamena pumila and Obelia longissima - was studied based on immunocytochemical and ultrastructural investigations. Results: Confocal scanning laser microscopy revealed a loose system composed of delicate, mostly bipolar, neurons visualized using a combination of anti-tyrosinated and anti-acetylated a-tubulin antibodies, as well as anti-RF-amide antibodies. Only ganglion nerve cells were observed. The neurites were found in the growing stolon tips close to the tip apex. Ultrastructural data confirmed the presence of neurons in the coenosarc epidermis of all the studied species. In the coenosarc, the neurons and their processes were found to settle on the mesoglea, and the muscle processes were found to overlay the nerve cells. Some of the neurites were found to run within the mesoglea. Discussion: Based on the findings, the possible role of the colonial nervous system in sessile hydroids is discussed.


Asunto(s)
Neuritas , Neuronas , Animales , Amidas , Microscopía Confocal , Músculos
10.
Proc Biol Sci ; 290(2004): 20230851, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37528709

RESUMEN

Sampling in multiple localities, coupled with molecular barcoding, has shown that nominal species with wide geographical distribution often harbour local cryptic species in allopatry. Cryptic species in sympatry, however, can be easily missed if they have different seasonality, because they can be identified only through long-term frequent sampling (i.e. sampling through time of the same species in the same location). This is especially true in planktonic invertebrates that exhibit strong seasonality. By integrating mitochondrial 16S sequences of eight species of Hydrozoa (Cnidaria) collected weekly for a year in one Gulf of Mexico region, with sequences gathered globally, we investigate the presence of cryptic species within a temporal gradient (regionally) and on a spatial (worldwide) scale. We find that eight species of Hydrozoa are composed of 28 cryptic species, with 16 of them appearing in sympatry but with non-overlapping seasonality. The high number of sympatric cryptic species could only be discovered through extensive and prolonged regional sampling efforts. The bi-dimensional cryptic diversity (in time and space) highlighted in this study is essential for understanding processes of evolution, biogeography dispersal in the sea, and for more realistic biodiversity assessments.


Asunto(s)
Hidrozoos , Animales , Filogenia , Biodiversidad , Simpatría , Golfo de México
11.
PeerJ ; 11: e15423, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37273545

RESUMEN

The brown alga Sargassum provides a natural substrate occupied by hydrozoans in shallow marine waters. A global count in 2007 listed 39 epibiotic species of Hydrozoa growing on Sargassum, but more studies have been published since, therefore, an update is timely, particularly due to the increased abundance of Sargassum in the Caribbean. This review, based on a recent literature survey and new records from Mexico, includes 133 publications of epibiotic hydrozoans on Sargassum spanning 220 years, from 1802 to 2022. A total of 131 hydrozoan species were recorded on 26 species of Sargassum, most belonging to the subclass Hydroidolina (130), with only one record of a trachyline medusa (Gonionemus vertens, subclass Trachylinae). Most publications centered on the Tropical Atlantic, where the greatest number of hydrozoan species (67 species) were recorded. All hydrozoan species possess a hydrorhiza, except one hydromedusae species that attach to Sargassum via adhesive tentacles. Most of the hydrozoan species associated with Sargassum exhibited a benthic life cycle (93 species) and are comprised of erect, branched colonies (67 species) and large hydrothecae (69 species). Although the number of studies of epibiotic hydrozoans on Sargassum has increased since the mid-20th century, nevertheless hydrozoan richness has not reached an asymptote. Therefore, more sampling of Sargassum species would likely identify more hydrozoan species associated with Sargassum, especially among benthic Sargassum, and might help reveal potential biogeographical and ecological patterns between Sargassum and hydrozoan epibionts.


Asunto(s)
Hidrozoos , Sargassum , Animales , Estadios del Ciclo de Vida , Región del Caribe , México
12.
G3 (Bethesda) ; 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37294738

RESUMEN

Hydractinia symbiolongicarpus is a pioneering model organism for stem cell biology, being one of only a few animals with adult pluripotent stem cells (known as i-cells). However, the unavailability of a chromosome-level genome assembly has hindered a comprehensive understanding of global gene regulatory mechanisms underlying the function and evolution of i-cells. Here, we report the first chromosome-level genome assembly of H. symbiolongicarpus (HSymV2.0) using PacBio HiFi long-read sequencing and Hi-C scaffolding. The final assembly is 483 Mb in total length with 15 chromosomes representing 99.8% of the assembly. Repetitive sequences were found to account for 296 Mb (61%) of the total genome; we provide evidence for at least two periods of repeat expansion in the past. A total of 25,825 protein-coding genes were predicted in this assembly, which include 93.1% of the metazoan Benchmarking Universal Single-Copy Orthologs (BUSCO) gene set. 92.8% (23,971 genes) of the predicted proteins were functionally annotated. The H. symbiolongicarpus genome showed a high degree of macrosynteny conservation with the Hydra vulgaris genome. This chromosome-level genome assembly of H. symbiolongicarpus will be an invaluable resource for the research community that enhances broad biological studies on this unique model organism.

13.
Mol Ecol ; 32(14): 3892-3907, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37161896

RESUMEN

Multisensory integration (MSI) combines information from more than one sensory modality to elicit behaviours distinct from unisensory behaviours. MSI is best understood in animals with complex brains and specialized centres for parsing different modes of sensory information, but dispersive larvae of sessile marine invertebrates utilize multimodal environmental sensory stimuli to base irreversible settlement decisions on, and most lack complex brains. Here, we examined the sensory determinants of settlement in actinula larvae of the hydrozoan Ectopleura crocea (Cnidaria), which possess a diffuse nerve net. A factorial settlement study revealed that photo-, chemo- and mechanosensory cues each influenced the settlement response in a complex and hierarchical manner that was dependent on specific combinations of cues, an indication of MSI. Additionally, sensory gene expression over development peaked with developmental competence to settle, which in actinulae, requires cnidocyte discharge. Transcriptome analyses also highlighted several deep homological links between cnidarian and bilaterian mechano-, chemo-, and photosensory pathways. Fluorescent in situ hybridization studies of candidate transcripts suggested cellular partitioning of sensory function among the few cell types that comprise the actinula nervous system, where ubiquitous polymodal sensory neurons expressing putative chemo- and photosensitivity interface with mechanoreceptive cnidocytes. We propose a simple multisensory processing circuit, involving polymodal chemo/photosensory neurons and mechanoreceptive cnidocytes, that is sufficient to explain MSI in actinulae settlement. Our study demonstrates that MSI is not exclusive to complex brains, but likely predated and contextualized their evolution.


Asunto(s)
Cnidarios , Células Receptoras Sensoriales , Animales , Cnidarios/genética , Cnidarios/fisiología , Hibridación Fluorescente in Situ , Larva/fisiología
14.
PeerJ ; 11: e15118, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065693

RESUMEN

Knowledge of life histories is crucial for understanding ecological and evolutionary processes, but for many hydrozoan species only incomplete life cycles have been described due to challenges in linking hydromedusae with their polyp stages. Using a combination of DNA barcoding, morphology, and ecological information, we describe for the first time the polyp stage of Halopsis ocellata Agassiz, 1865 and re-describe that of Mitrocomella polydiademata (Romanes, 1876). Campanulinid hydroids referable to Lafoeina tenuis Sars, 1874 and collected in the same biogeographic region as the type locality of this species are shown to be the polyp stage of these two mitrocomid hydromedusae. The nominal species L. tenuis thus is a species complex that includes the polyp stage of medusae belonging to at least two genera currently placed in a different family. Consistent morphological and ecological differences were found between the polyps linked to each of these two hydromedusae, but molecular results suggest that yet other species may have morphologically similar hydroids. Polyps morphologically identified to L. tenuis are therefore better referred to as Lafoeina tenuis-type until further associations are resolved, particularly when occurring outside of the area of distribution of H. ocellata and M. polydiademata. Molecular identification integrated with traditional taxonomy is confirmed as an effective approach to link inconspicuous stages of marine invertebrates with hitherto unknown life cycles, especially in often-overlooked taxa. Disentangling the relationships between L. tenuis, H. ocellata, and M. polydiademata lays the ground for future research aimed at resolving the taxonomy and systematics of the enigmatic families Mitrocomidae and Campanulinidae.


Asunto(s)
Hidrozoos , Humanos , Animales , Hidrozoos/genética , Código de Barras del ADN Taxonómico , Filogenia , Evolución Biológica , Estadios del Ciclo de Vida/genética
15.
Toxins (Basel) ; 15(2)2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36828463

RESUMEN

Hydractinia symbiolongicarpus is a colonial hydrozoan that displays a division of labor through morphologically distinct and functionally specialized polyp types. As with all cnidarians, their venoms are housed in nematocysts, which are scattered across an individual. Here, we investigate the spatial distribution of a specific protein family, jellyfish toxins, in which multiple paralogs are differentially expressed across the functionally specialized polyps. Jellyfish toxins (JFTs) are known pore-forming toxins in the venoms of medically relevant species such as box jellyfish (class Cubozoa), but their role in other medusozoan venoms is less clear. Utilizing a publicly available single-cell dataset, we confirmed that four distinct H. symbiolongicarpus JFT paralogs are expressed in nematocyst-associated clusters, supporting these as true venom components in H. symbiolongicarpus. In situ hybridization and immunohistochemistry were used to localize the expression of these JFTs across the colony. These expression patterns, in conjunction with known nematocyst type distributions, suggest that two of these JFTs, HsymJFT1c-I and HsymJFT1c-II, are localized to specific types of nematocysts. We further interpret JFT expression patterns in the context of known regions of nematogenesis and differential rates of nematocyst turnover. Overall, we show that JFT expression patterns in H. symbiolongicarpus are consistent with the subfunctionalization of JFT paralogs across a partitioned venom system within the colony, such that each JFT is expressed within a specific set of functionally distinct polyp types and, in some cases, specific nematocyst types.


Asunto(s)
Venenos de Cnidarios , Cubomedusas , Hidrozoos , Escifozoos , Toxinas Biológicas , Animales , Nematocisto , Hidrozoos/metabolismo , Venenos de Cnidarios/metabolismo , Escifozoos/metabolismo , Toxinas Biológicas/metabolismo
16.
Mitochondrial DNA B Resour ; 8(12): 1381-1385, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38189024

RESUMEN

Eirene ceylonensis, a hydrozoan jellyfish species with a complex polymorphic life cycle, is widely distributed in the Chinese coastal sea. In this study, we conducted sequencing and analysis of the first complete mitochondrial genome of E. ceylonensis, obtained from the coastal sea of Qinhuangdao, China. The linear mitochondrial genome is 14,997 bp in length with the overall AT content being 72.8%, encoding 13 protein-coding genes (PCGs), two transfer RNA (tRNA) genes (tRNA-Met and tRNA-Trp) and two ribosomal RNA (rRNA) genes (rrnS and rrnL). Phylogenetic analysis of 13 PCGs suggests that the E. ceylonensis is closely related to Laomedea flexuosa. The availability of the complete mitochondrial genome of E. ceylonensis will be useful for studying the evolutionary relationships of hydrozoan jellyfish species.

17.
BMC Genomics ; 22(1): 862, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34847889

RESUMEN

BACKGROUND: The animal phylum Cnidaria consists of six classes or subphyla: Hydrozoa, Scyphozoa, Cubozoa, Staurozoa, Anthozoa, and Endocnidozoa. Cnidarians have an early evolutionary origin, diverging before the emergence of the Bilateria. Extant members from this phylum, therefore, are important resources for understanding the evolution of the nervous system. Cnidarian nervous systems are strongly peptidergic. Using genomics, we have recently shown that three neuropeptide families (the X1PRX2amides, GRFamides, and GLWamides) are wide-spread in four (Scyphozoa, Cubozoa, Staurozoa, Anthozoa) out of six cnidarian classes or subphyla, suggesting that these three neuropeptide families emerged in the common cnidarian ancestor. In the current paper, we analyze the remaining cnidarian class, Hydrozoa, and the subphylum Endocnidozoa, to make firm conclusions about the evolution of neuropeptide genes in Cnidaria. RESULTS: We analyzed sixteen hydrozoan species with a sequenced genome or transcriptome, using a recently developed software program for discovering neuropeptide genes. These species belonged to various hydrozoan subclasses and orders, among them the laboratory models Hydra, Hydractinia, and Clytia. We found that each species contained three to five neuropeptide families. A common feature for all hydrozoans was that they contained genes coding for (i) X1PRX2amide peptides, (ii) GRFamide peptides, and (iii) GLWamide peptides. These results support our previous conclusions that these three neuropeptide families evolved early in evolution. In addition to these three neuropeptide families, hydrozoans expressed up to two other neuropeptide gene families, which, however, were only occurring in certain animal groups. Endocnidozoa (Myxozoa) are microscopically small endoparasites, which are strongly reduced. For long, it was unknown to which phylum these parasites belonged, but recently they have been associated with cnidarians. We analyzed nine endocnidozoan species and found that two of them (Polypodium hydriforme and Buddenbrockia plumatellae) expressed neuropeptide genes. These genes coded for neuropeptides belonging to the GRFamide and GLWamide families with structures closely resembling them from hydrozoans. CONCLUSIONS: We found X1PRX2amide, GRFamide, and GLWamide peptides in all species belonging to the Hydrozoa, confirming that these peptides originated in the common cnidarian ancestor. In addition, we discovered GRFamide and GLWamide peptide genes in some members of the Endocnidozoa, thereby linking these parasites to Hydrozoa.


Asunto(s)
Cnidarios , Hidrozoos , Myxozoa , Neuropéptidos , Animales , Cnidarios/genética , Evolución Molecular , Genómica , Hidrozoos/genética , Myxozoa/genética , Neuropéptidos/genética , Filogenia
18.
Acta biol. colomb ; 26(3): 303-311, sep.-dic. 2021. tab, graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1360024

RESUMEN

RESUMEN Los desechos derivados del proceso de perforación en las plataformas marinas petroleras pueden dejar hasta 200 000 toneladas de residuos de perforación en los ecosistemas marinos. El principal agente contaminante son los lodos de perforación petrolera (LPPs), que son usados para enfriar y lubricar la broca de perforación, además de contrarrestar fuerzas de presión y posibles fugas de hidrocarburos. Se sabe que los LPPs tienen un efecto contaminante y tóxico observándose alteraciones en los ecosistemas y efectos adversos en organismos invertebrados marinos, debidos principalmente a la presencia de barita y trazas de metales pesados. En este trabajo se realizaron experimentos de exposición hiperagudos con mezclas completas de lodos de perforación base agua (WBM) a máximos niveles de concentración en colonias de Hydractinia symbiolongicarpus. Los resultados mostraron cambios significativos (p < 0,001) en la morfología de los pólipos inmediatamente después del contacto con WBM, con un incremento 1,5 veces en el diámetro del pólipo y una retracción en la longitud de los tentáculos del 75 %. Después de la exposición (fase de recuperación), se observó una disminución de biomasa a las 72 h con pérdida del 50 % de los pólipos y una reducción de la mata estolonal cercana al 50 % (p < 0,01). Efectos similares han sido reportados en otras especies de cnidarios, como los corales, donde se observó retracción de pólipos y zonas expuestas de exoesqueleto. La exposición a WBM genera irritación tisular en exposición directa y en casos severos pérdida de biomasa.


ABSTRACT Wastes derived from the drilling process on offshore oil platforms can leave up to 200 000 tons of cuttings in marine ecosystems. The principal pollutants in cuttings are drilling muds (DM). The DM are used to cool and lubricate the drill bit, counteract pressure forces and possible hydrocarbon leaks. DM contaminate the marine environment and have toxic adverse effects upon marine invertebrate organisms, mainly due to the presence of barite and traces of heavy metals. In this research, hyperacute exposure experiments were performed with complete mixtures of water-based drilling muds (WBM) at maximum concentration levels in Hydractinia symbiolongicarpus colonies. Results showed significant changes (p < 0.001) in polyp morphology immediately after contact with WBM, with a 1.5-fold increase in its diameter and a 75 % of retraction in the length of the tentacles. A biomass loss was observed after exposure (recovery phase). Near 50 % of polyps and stolonal mat were bioabsorbed with statistical significance (p < 0.01) at 72 h. Similar effects have been reported in other species of cnidarians, such as corals, where there is retraction of polyps and exoskeleton exposed areas also observed. Exposure to WBM generates tissue irritation and extreme cases loss of biomass.

19.
Mitochondrial DNA B Resour ; 6(11): 3196-3198, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660901

RESUMEN

The hydrozoan species Nemalecium lighti (Hargitt, 1924) is widely distributed in tropical marine waters around the world. Here we report the complete linear mitochondrial genome of N. lighti from Sint Eustatius (Lesser Antilles). The mitochondrial genome with a length of 14,320 bp encodes for 13 protein-coding genes, two tRNA genes, and two rRNA genes. Gene arrangement differs from that found in other species of the same taxonomic order and a phylogenetic analysis shows that based on mitochondrial genes, N. lighti clusters outside of the Leptothecata, rendering the order paraphyletic.

20.
PeerJ ; 9: e12104, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589302

RESUMEN

Higher-level relationships of the Hydrozoan subclass Hydroidolina, which encompasses the vast majority of medusozoan cnidarian species diversity, have been elusive to confidently infer. The most widely adopted phylogenetic framework for Hydroidolina based on ribosomal RNA data received low support for several higher level relationships. To address this issue, we developed a set of RNA baits to target more than a hundred loci from the genomes of a broad taxonomic sample of Hydroidolina for high-throughput sequencing. Using these data, we inferred the relationships of Hydroidolina using maximum likelihood and Bayesian approaches. Both inference methods yielded well-supported phylogenetic hypotheses that largely agree with each other. Using maximum likelihood and Baysian hypothesis testing frameworks, we found that several alternate topological hypotheses proposed previously may be rejected in light of the genomic data generated for this study. Both the maximum likelihood and Bayesian topologies inferred herein consistently score well across testing frameworks, suggesting that their consensus represents the most likely phylogenetic hypothesis of Hydroidolina. This phylogenetic framework places Aplanulata as sister lineage to the remainder of Hydroidolina. This is a strong deviation from previous phylogenetic analyses that placed Capitata or Siphonophorae as sister group to the remainder of Hydroidolina. Considering that Aplanulata represents a lineage comprised of species that for the most part possess a life cycle involving a solitary polyp and free-swimming medusa stage, the phylogenetic hypotheses presented herein have potentially large implications for clarifying the evolution of life cycles, coloniality, and the division of labor in Hydrozoa as taxon sampling for phylogenetic analyses becomes more complete.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA