Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39034726

RESUMEN

BACKGROUND: Diltiazem hydrochloride is a calcium channel-blocker with a plasma elimination half-life of 4.4 ± 1.3 h and has a narrow absorption window. So, this work aimed to prepare a gastro-retentive floating matrix tablet. METHODS: The direct compression method was used to manufacture tablets. 32 factorial design was applied for optimization, taking Hydroxypropyl Methylcellulose K100M (HPMC K 100M) and the amount of sodium bicarbonate as independent factors and cumulative percentage release at 1 h, at 6 h, and at 12 h and floating lag time as dependent variables. RESULTS: The high amount of HPMC K100M and sodium bicarbonate shows good results. The optimized preparation was evaluated for differential scanning calorimetry, in-vivo gastric retention in male albino rabbits, kinetic modeling, and stability study. An in vivo study revealed gastric retention of tablets up to 6 h in healthy male Albino rabbits. The stability study indicated no significant change in the buoyancy and release profiles of the drug. CONCLUSION: From this study, it can be concluded that the gastro-retentive diltiazem hydrochloride floating matrix tablet was successfully prepared and retained inside the rabbit stomach for up to 6 h and was stable under accelerated stability study.

2.
Foods ; 13(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38890919

RESUMEN

The demand for gluten-free products has increased due to improved diagnoses and awareness of gluten-related issues. This study investigated the effect of HPMC, psyllium, and xanthan gum in gluten-free bread formulations. Three tests were conducted, varying the amount of these ingredients: in the first formulation, the amount of HPMC was increased to 4.4 g/100 g of flour and starch; in the second, psyllium husk fiber was increased to 13.2 g/100 g of flour and starch; and in the third formulation, xanthan gum was removed. Differences were observed among the formulations: increasing HPMC reduced extrusion force without affecting bread quality; adding psyllium increased dough elasticity but also crumb gumminess and crust hardness. Eliminating xanthan gum altered dough rheology, resulting in a softer and less gummy crumb, and a less reddish color in the final bread.

3.
Polymers (Basel) ; 16(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38891551

RESUMEN

This study aimed to examine the characteristics of H-K4M hydroxypropyl methylcellulose (HPMC) films containing nanostructured lipid carriers (NLCs) loaded with furosemide. A hot homogenization technique and an ultrasonic probe were used to prepare and reduce the size of the NLCs. Films were made using the casting technique. This study used a Box-Behnken design to evaluate the influence of three key independent variables, specifically H-K4M concentration (X1), surfactant Cremophor RH40 concentration (X2), and mixing speed (X3), on the physicochemical properties of furosemide-loaded NLCs and films. The furosemide-loaded NLCs had a particle size ranging from 54.67 to 99.13 nm, and a polydispersity index (PDI) ranging from 0.246 to 0.670. All formulations exhibited a negative zeta potential, ranging from -7.05 to -5.61 mV. The prepared films had thicknesses and weights ranging from 0.1240 to 0.2034 mm and 0.0283 to 0.0450 g, respectively. The drug content was over 85%. Film surface wettability was assessed based on the contact angle, ranging from 32.27 to 68.94°. Film tensile strength varied from 1.38 to 7.77 MPa, and their elongation at break varied from 124.19 to 170.72%. The ATR-FTIR analysis confirmed the complete incorporation of the drug in the film matrix. Therefore, the appropriate selection of values for key parameters in the synthesis of HPMC films containing drug-loaded NLCs is important in the effective development of films for medical applications.

4.
Foods ; 13(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731756

RESUMEN

The aim of this research was to optimize the production process of fermented gluten-free quinoa bread. To this end, the effect of different hydrocolloids on the technological, fermentative, and nutritional properties of quinoa-based gluten-free doughs and breads was evaluated. For this purpose, 3% of four different hydrocolloids (sodium alginate, k-carrageenan, xanthan gum, and hydroxypropyl methylcellulose (HPMC)) were used in gluten-free doughs composed of 50% quinoa flour, 20% rice flour, and 30% potato starch. The rheological and fermentative properties of the doughs were evaluated, as well as the chemical composition, specific volume, crust and crumb color, and alveolar structure profile of gluten-free breads. The results highlighted the differences in dough rheology during mixing and fermentation of the doughs. In particular, HPMC showed a good gas retention (93%) during the fermentation of quinoa dough by registering the highest maximum dough development height (Hm). The gluten-free quinoa breads obtained were characterized by significantly different quality parameters (p < 0.05). The use of 3% HPMC resulted in breads with the lowest baking loss, the highest volume, and the most open crumb structure.

5.
BMC Complement Med Ther ; 24(1): 56, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273247

RESUMEN

AIMS: Thymus plant is a very useful herbal medicine with various properties such as anti-inflammatory and antibacterial. Therefore, the properties of this plant have made this drug a suitable candidate for wound healing. In this study, hydroxypropyl methylcellulose (HPMC) gel containing Zataria multiflora volatile oil nanoemulsion (neZM) along with polycaprolactone/chitosan (PCL-CS) nanofibrous scaffold was used, and the effect of three experimental groups on the wound healing process was evaluated. The first group, HPMC gel containing neZM, the second group, PCL-CS nanofibers, and the third group, HPMC gel containing neZM and bandaged with PCL-CS nanofibers (PCL-CS/neZM). Wounds bandaged with common sterile gas were considered as control. METHODS: The nanoemulsion was synthesized by a spontaneous method and loaded into a hydroxypropyl methylcellulose (HPMC) gel. The DLS test investigated the size of these nanoemulsions. A PCL-CS nanofibrous scaffold was also synthesized by electrospinning method then SEM and contact angle tests investigated morphology and hydrophilicity/hydrophobicity of its surface. The animal study was performed on full-thickness skin wounds in rats, and the process of tissue regeneration in the experimental and control groups was evaluated by H&E and Masson's trichrome staining. RESULTS: The results showed that the nanoemulsion has a size of 225±9 nm and has an acceptable dispersion. The PCL-CS nanofibers synthesized by the electrospinning method also show non-beaded smooth fibers and due to the presence of chitosan with hydrophilic properties, have higher surface hydrophobicity than PCL fibers. The wound healing results show that the PCL-CS/neZM group significantly reduced the wound size compared to the other groups on the 7th, 14th, and 21st days. The histological results also show that the PCL-CS/neZM group could significantly reduce the parameters of edema, inflammation, and vascularity and increase the parameters of fibrosis, re-epithelialization, and collagen deposition compared to other groups on day 21. CONCLUSION: The results of this study show that the PCL-CS/neZM treatment can effectively improve wound healing.


Asunto(s)
Quitosano , Aceites Volátiles , Poliésteres , Ratas , Animales , Quitosano/farmacología , Aceites Volátiles/farmacología , Derivados de la Hipromelosa/farmacología , Cicatrización de Heridas
6.
Eur J Pharm Sci ; 192: 106619, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37866675

RESUMEN

This study investigates the influence of drug load and polymer molecular weight on the structure of tablets three-dimensionally (3D) printed from the binary mixture of prednisolone and hydroxypropyl methylcellulose (HPMC). Three different HPMC grades, (AFFINISOLTM HPMC HME 15LV, 90 Da (HPMC 15LV); 100LV, 180 Da (HPMC 100LV); 4M, 500 Da (HPMC 4M)), which are suitable for hot-melt extrusion (HME), were used in this study. HME was used to fabricate feedstock material, i.e., filaments, at the lowest possible extrusion temperature. Filaments of the three HPMC grades were prepared to contain 2.5, 5, 10 and 20 % (w/w) prednisolone. The thermal degradation of the filaments was studied with thermogravimetric analysis, while solid-state properties of the drug-loaded filaments were assessed with the use of X-ray powder diffraction. Prednisolone in the freshly extruded filaments was determined to be amorphous for drug loads up to 10%. It remained physically stable for at least 6 months of storage, except for the filament containing 10% drug with HPMC 15LV, where recrystallization of prednisolone was detected. Fused deposition modeling was utilized to print honeycomb-shaped tablets from the HME filaments of HPMC 15LV and 100LV. The structural characteristics of the tablets were evaluated using X-ray microcomputed tomography, specifically porosity and size of structural elements were investigated. The tablets printed from HPMC 15LV possessed in general lower total porosity and pores of smaller size than tablets printed from the HPMC 100LV. The studied drug loads were shown to have minor effect on the total porosity of the tablets, though the lower the drug load was, the higher the variance of porosity along the height of the tablet was observed. It was found that tablets printed with HPMC 15LV showed higher structural similarity with the virtually designed model than tablets printed from HPMC 100LV. These findings highlight the relevance of the drug load and polymer molecular weight on the microstructure and structural properties of 3D printed tablets.


Asunto(s)
Polímeros , Prednisolona , Polímeros/química , Peso Molecular , Microtomografía por Rayos X , Comprimidos/química , Liberación de Fármacos , Impresión Tridimensional , Tecnología Farmacéutica/métodos
7.
Dent Mater ; 39(6): 595-602, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37150730

RESUMEN

OBJECTIVES: Recurrent aphthous stomatitis (RAS) is a painful disorder that commonly appears as ulcers on the oral mucosa, lasting ∼two weeks (minor) to months (major and herpetiform). Current treatment often necessitates the use of topical steroids in the form of pastes, mouthwashes, or gels, but these forms are often ineffective due to inadequate drug contact time with the ulcers. In this study, the performance of novel bilayer mucoadhesive buccal films loaded with triamcinolone acetonide (TA) has been evaluated for targeted drug delivery. METHODS: Experimental mucoadhesive films of hydroxypropyl methylcellulose (HPMC), polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) were prepared by the solvent casting method, and ethyl cellulose (EC) was applied as the backing layer. The films were characterized for their physical properties, including swelling index (SI), folding endurance, adhesion force with porcine buccal mucosa, residence time and in-vitro drug release. RESULTS: The data showed that the films were flexible with folding endurance> 300 times. With porcine buccal mucosa i) suitable adhesion forces were obtained (between 2.72 and 4.03 N), ii) residence times of> 24 h, and iii) surface pH between 6.8 and 7.1 indicating they would be non-irritant. All films released 100% TA over 6 h, but with varying profiles. The release of TA (over 6 h) from PVP-free films followed Fickian diffusion kinetics (diffusion-controlled release of drug), whereas the mechanism of release from PVP-containing films was found to be a superposition of diffusion-controlled and erosion-controlled release (anomalous). SIGNIFICANCE: The developed films hold great promise for potentially treating RAS and other oral conditions.


Asunto(s)
Estomatitis Aftosa , Triamcinolona Acetonida , Animales , Porcinos , Triamcinolona Acetonida/farmacología , Triamcinolona Acetonida/uso terapéutico , Úlcera/tratamiento farmacológico , Preparaciones de Acción Retardada/farmacología , Preparaciones de Acción Retardada/uso terapéutico , Estomatitis Aftosa/tratamiento farmacológico , Mucosa Bucal , Sistemas de Liberación de Medicamentos/métodos
8.
Int J Pharm ; 629: 122391, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36379397

RESUMEN

In this study, a new method to determine the solubility of crystalline drugs in (amorphous) polymers is proposed. The method utilizes annealing of supersaturated amorphous solid dispersions to achieve equilibrium between dissolved and recrystallized drug. By measuring the enthalpy of melting and mixing (Hm+mix) of the recrystallized drug, the equilibrium solubility of the drug in the polymer at the annealing temperature is determined. The equilibrium solubilities at these elevated temperatures were used to extrapolate to room temperature using the Flory-Huggins model. The new Hm+mix method showed solubility predictions in line with the melting point depression (MPD) and recrystallization (RC) methods for indomethacin (IMC) -polyvinylpyrrolidone (PVP). For IMC-hydroxypropyl methylcellulose (HPMC), the MPD method plateaued rapidly, leaving only one usable data point. The RC method showed large variations in the solubility predictions possibly due to a narrow glass transition temperature (Tg) window or inaccurate Tg determination. In contrast, the new Hm+mix method showed robust solubility prediction over the entire annealing temperature range with low variation and narrow error margins after extrapolation for both drug-polymer systems. The new Hm+mix method was able to accurately determine the drug-polymer solubility of IMC-HPMC, showing promise as a new tool to determine the solubility of problematic drug-polymer systems.


Asunto(s)
Polímeros , Povidona , Solubilidad , Polímeros/química , Cristalización/métodos , Povidona/química , Termodinámica , Indometacina/química , Derivados de la Hipromelosa , Rastreo Diferencial de Calorimetría
9.
Carbohydr Polym ; 296: 119951, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36088030

RESUMEN

Hydroxypropyl methylcellulose (HPMC) and curdlan (CL) were used to prepare uniform films. The influence of the composition ratios and drying temperature on the microstructures, compatibility and physical performance of HPMC/CL films were studied. The crystalline peaks corresponding to CL component of HPMC/CL films increased with the increasing CL content. Increasing CL content resulted in increased hydrogen bonds in HPMC/CL film, reduced transmittance at 500 nm, oxygen permeability and water solubility of the HPMC/CL films. Higher drying temperature led to increased phase separation and decreased physical properties of pure HPMC film, and led to increased compatibility, cross-section smoothness, oxygen barrier property and mechanical properties of pure CL and blending films.


Asunto(s)
Desecación , Oxígeno , Derivados de la Hipromelosa/química , Temperatura , beta-Glucanos
10.
Foods ; 11(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36010470

RESUMEN

Oxyresveratrol (Oxy) has attracted much attention by employing it as an antibrowning agent in fruits and vegetables. In this study, the formation of cyclodextrin (CD) inclusion exhibited a certain protective effect on Oxy oxidative degradation, while hydroxypropyl-ß-cyclodextrin (HP-ß-CD) inclusion complex showed stronger stabilizing effects than those of ß-cyclodextrin (ß-CD). The combined use of CD and hydroxypropyl methylcellulose (HPMC) greatly improved the stability of Oxy-CD inclusion complexes, with approximately 70% of the trans-Oxy retained after 30 days of storage under light conditions at 25 °C. The results of the interaction between CD and Oxy determined by phase solubility studies and fluorescence spectroscopic analysis showed that the binding strength of CD and Oxy increased in the presence of HPMC. Moreover, Oxy combined with ascorbic acid and HPMC showed an excellent antibrowning effect on fresh-cut apple slices during the 48 h test period, indicating that adding HPMC as the third component will not influence the antibrowning activity of Oxy.

11.
Foods ; 11(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36010537

RESUMEN

The combination of two emulsifiers, lecithin and hydroxypropyl methylcellulose (HPMC), into emulsions is an interesting strategy to design fat replacers in food matrices. The objective of this study was to investigate the effect of HPMC type and concentration on the formation, stability, and microstructure of conventional emulsions and nanoemulsions. Two different types of HPMC with low and high content of methyl and hydroxypropyl groups (HPMC-L and HPMC-H) were evaluated. The results showed that the molecular structure and concentration of HPMC play a major role in the viscoelastic behaviour, the gelation temperature, and the strength of gel formed. The firmness and work of shear of HPMC solutions increased significantly (p < 0.05) with increasing concentration. HPMC-L illustrated a more stable gel structure than the HPMC-H solution. Nanoemulsions showed lower moduli values, firmness, and work of shear than conventional emulsions due to the influence of high-pressure homogenization. A combination of lecithin and HPMC improved the physical and lipid oxidative stability of the emulsions, presenting a lower creaming index and thiobarbituric acid reactive substances (TBARS). In conclusion, HPMC-L at 2% w/w could be a suitable type and concentration combined with lecithin to formulate a saturated fat replacer that could mimic butter technological performance during food manufacturing operations.

12.
Polymers (Basel) ; 14(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36015661

RESUMEN

The purpose of this research was to see how the physicochemical properties and porosity of matrix tablets containing various types of hydroxypropyl methylcellulose (HPMC) K series affected the release of propranolol hydrochloride (PNL). PNL is a class I drug (high solubility and permeability) according to the Biopharmaceutics Classification System (BCS), making it an excellent model drug used for studying extended-release drug products. The direct compression method was used to prepare the HPMC-based matrix tablets. PNL and the excipients were found to be compatible using Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), and differential scanning calorimetry (DSC). The surfaces of all the compressed HPMC-based matrix tablets were rough, with accumulated particles and small holes. The compressed HPMC-based matrix tablet porosity was also determined by using mercury porosimetry. The compressed HPMC-based matrix tablets made of low viscosity HPMC had tiny pores (diameter < 0.01 µm). The shorter polymeric chains are more prone to deformation, resulting in a small pore proportion. The compressed HPMC-based matrix tablets sustained the release of PNL for over 12 h. The release exponent values (n), which reflect the release mechanism of the drug from the tablets, ranged from 0.476 to 0.497. These values indicated that the release was governed by anomalous transport. The compressed HPMC-based matrix tablets have the potential for a sustained release of PNL.

13.
AAPS PharmSciTech ; 23(5): 157, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35672486

RESUMEN

Gastroretentive drug delivery systems (GRDDS) get retained in the stomach for a long time, thus facilitating the absorption of drugs in the upper gastrointestinal tract. However, drugs that are difficult to dissolve or unstable in an acidic environment are not suitable for GRDDS. The current study designs GRDDS combined with a self-micro-emulsifying drug delivery system (SMEDDS) for drugs with solubility or stability problems in the stomach. The model drug fenofibrate was formulated into the optimized liquid SMEDDS composed of 50 w/w% Capryol® PGMC, 40 w/w% Kolliphor® RH40, and 10 w/w% Transcutol® HP and solidified through adsorption on several porous adsorbents. In a dissolution medium at pH 1.2, the powdered SMEDDS using Fujicalin® dissolved quickly and achieved higher drug dissolution than other adsorbents. Based on these results, a gastroretentive bilayer tablet consisting of a drug release layer and a swelling layer was designed. The drug release layer was formulated with the powdered SMEDDS and hydroxypropyl methylcellulose (HPMC) as a release modifier. HPMC was also added to the swelling layer as a water-swellable polymer. The dissolution rate depended on the viscosity of the HPMC in the drug release layer. The time for 90% drug release was extended from 3.7 to 12.0 h by increasing the viscosity grade of HPMC from 0.1 to 100 K. Moreover, the tablet swelled and maintained a size comparable to a human pylorus diameter or more for at least 24 h. This GRDDS could apply to a broader range of drug candidates.


Asunto(s)
Sistemas de Liberación de Medicamentos , Excipientes , Fosfatos de Calcio , Preparaciones de Acción Retardada , Humanos , Derivados de la Hipromelosa , Polvos , Solubilidad , Comprimidos
14.
Polymers (Basel) ; 14(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35683883

RESUMEN

The present study aimed to prepare methotrexate-loaded transdermal patches with different blends of hydrophobic and hydrophilic polymers (Eudragit S-100 and hydroxypropyl methylcellulose) at different concentrations. The polymers employed in transdermal patches formulations served as controlled agent. Transdermal patches were prepared using the solvent casting technique. The suitable physicochemical properties were obtained from the formulation F5 (HPMC and Eudragit S-100 (5:1). Various penetration enhancers were employed in different concentrations to investigate their potential for enhancing the drug permeation profile from optimized formulations. A preformulation study was conducted to investigate drug-excipient compatibilities (ATR-FTIR) and the study showed greater compatibility between drug, polymers and excipients. The prepared patches containing different penetration enhancers at different concentrations were subjected for evaluating different physicochemical parameters and in vitro drug release studies. The obtained data were added to various kinetic models, then formulated patch formulations were investigated for ex vivo permeation studies, in vivo studies and skin drug retention studies. The prepared patches showed elastic, smooth and clear nature with good thickness, drug content, % moisture uptake and weight uniformity. The prepared transdermal patches showed % drug content ranging from 91.43 ± 2.90 to 98.37 ± 0.56, % swelling index from 36.98 ± 0.19 to 75.32 ± 1.21, folding endurance from 61 ± 3.14 to 78 ± 1.54 and tensile strength from 8.54 ± 0.18 to 12.87 ± 0.50. The formulation F5, containing a greater amount of hydrophilic polymers (HPMC), showed increased drug release and permeation and drug retention when compared to other formulated transdermal patch formulations (F1-F9). No significant change was observed during a stability study for a period of 60 days. The rabbit skin samples were subjected to ATR-FTIR studies, which revealed that polymers and penetration enhancers have affected skin proteins (ceramides and keratins). The pharmacokinetic profiling of optimized formulation (F5) as well as formulations with optimized concentrations of penetration enhancers revealed Cmax ranged 167.80 ng/mL to 178.07 ± 2.75 ng/mL, Tmax was 8 h to 10 h, and t1/2 was 15.9 ± 2.11 to 21.49 ± 1.16. From the in vivo studies, it was revealed that the formulation F5-OA-10% exhibited greater skin drug retention as compared to other formulations. These results depicted that prepared methotrexate transdermal patches containing different blends of hydrophobic and hydrophilic polymers along with different penetration enhancers could be safely used for the management of psoriasis. The formulated transdermal patches exhibited sustained release of drug with good permeations and retention profile. Hence, these formulated transdermal patches can effectively be used for the management of psoriasis.

15.
Polymers (Basel) ; 14(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35406184

RESUMEN

This study attempted to develop and evaluate controlled-release matrix-type transdermal patches with different ratios of hydrophilic polymers (sodium carboxymethylcellulose and hydroxypropyl methylcellulose) for the local delivery of methotrexate. Transdermal patches were formulated by employing a solvent casting technique using blends of sodium carboxymethylcellulose (CMC-Na) and hydroxypropylmethylcellulose (HPMC) polymers as rate-controlling agents. The F1 formulated patch served as the control formulation with a 1:1 polymer concentration. The F9 formulation served as our optimized formulation due to suitable physicochemical properties yielded through the combination of CMC-Na and HPMC (5:1). Drug excipient compatibilities (ATR-FTIR) were performed as a preformulation study. The ATR-FTIR study depicted great compatibility between the drug and the polymers. Physicochemical parameters, kinetic modeling, in vitro drug release, ex vivo drug permeation, skin drug retention, and in vivo studies were also carried out for the formulated patches. The formulated patches exhibited a clear, smooth, elastic nature with good weight uniformity, % moisture uptake, drug content, and thickness. Physicochemical characterization revealed folding endurance ranging from 62 ± 2.21 to 78 ± 1.54, tensile strength from 9.42 ± 0.52 to 12.32 ± 0.72, % swelling index from 37.16 ± 0.17 to 76.24 ± 1.37, and % drug content from 93.57 ± 5.34 to 98.19 ± 1.56. An increase in the concentration of the CMC-Na polymer (F9) resulted in increased drug release from the formulated transdermal patches. Similarly, drug permeation and retention were found to be higher in the F9 formulation compared to the other formulations (F1-F8). A drug retention analysis revealed that the F9 formulation exhibited 13.43% drug retention in the deep layers of the skin compared to other formulations (F1-F8). The stability study indicated that, during the study period of 60 days, no significant changes in the drug content and physical characteristics were found. ATR-FTIR analysis of rabbit skin samples treated with the formulated transdermal patches revealed that hydrophilic polymers mainly affect the skin proteins (ceramide and keratins). A pharmacokinetic profile revealed Cmax was 1.77.38 ng/mL, Tmax was 12 h, and t1/2 was 17.3 ± 2.21. In vivo studies showed that the skin drug retention of F9 was higher compared to the drug solution. These findings reinforce that methotrexate-based patches can possibly be used for the management of psoriasis. This study can reasonably conclude that methotrexate transdermal matrix-type patches with CMC-Na and HPMC polymers at different concentrations effectively sustain drug release with prime permeation profiles and better bioavailability. Therefore, these formulated patches can be employed for the potential management of topical diseases, such as psoriasis.

16.
AAPS PharmSciTech ; 21(4): 128, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32399597

RESUMEN

Capsule-based dry powder inhaler (DPI) products can be influenced by a multitude of interacting factors, including electrostatic charging. Tribo-charging is a process of charge transfer impacted by various factors, i.e., material surface characteristics, mechanical properties, processing parameters and environmental conditions. Consequently, this work aimed to assess how the charging behavior of capsules intended for inhalation might be influenced by environmental conditions. Capsules having different chemical compositions (gelatin and hydroxypropyl methylcellulose (HPMC)) and distinct inherent characteristics from manufacturing (thermally and cold-gelled) were exposed to various environmental conditions (11%, 22% and 51% RH). Their resulting properties were characterized and tribo-charging behavior was measured against stainless steel and PVC. It was observed that all capsule materials tended to charge to a higher extent when in contact with PVC. The tribo-charging of the thermally gelled HPMC capsules (Vcaps® Plus) was more similar to the gelatin capsules (Quali-G™-I) than to their HPMC cold-gelled counterparts (Quali-V®-I). The sorption of water by the capsules at different relative humidities notably impacted their properties and tribo-charging behavior. Different interactions between the tested materials and water molecules were identified and are proposed to be the driver of distinct charging behaviors. Finally, we showed that depending on the capsule types, distinct environmental conditions are necessary to mitigate charging and assure optimal behavior of the capsules.


Asunto(s)
Fenómenos Químicos , Inhaladores de Polvo Seco/métodos , Derivados de la Hipromelosa/química , Electricidad Estática , Administración por Inhalación , Cápsulas , Evaluación Preclínica de Medicamentos/métodos , Excipientes/química , Excipientes/metabolismo , Gelatina/química , Gelatina/metabolismo , Derivados de la Hipromelosa/metabolismo , Polvos
17.
Anticancer Res ; 39(12): 6531-6536, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31810918

RESUMEN

BACKGROUND/AIM: Oral mucositis is a significant side effect in cancer treatment. In this study, we aimed to develop a rebamipide-containing film using chitosan and hydroxypropyl methylcellulose (HPMC) to efficiently treat oral mucositis. MATERIALS AND METHODS: A 0.1% (w/v) rebamipide aqueous solution, a 1.4% (w/v) chitosan aqueous solution containing Pluronic® F-127, and a 1.0% (w/v) HPMC aqueous solution were mixed and dried using a square silicon frame to form a film. Cumulative release ratios of rebamipide from sample films were measured in a phosphate buffer (pH 6.8) at 37°C. RESULTS: Chitosan suppressed the release of rebamipide from the film for up to 30 min. HPMC contributed to the sustained release of the film over a relatively long period of time and the maintenance of its shape. CONCLUSION: The combined use of chitosan and HPMC is suitable as a base material for rebamipide-containing films.


Asunto(s)
Alanina/análogos & derivados , Quitosano/química , Derivados de la Hipromelosa/química , Quinolonas/química , Estomatitis/inducido químicamente , Alanina/química , Antineoplásicos/efectos adversos , Preparaciones de Acción Retardada , Humanos , Estomatitis/tratamiento farmacológico
18.
Pharmaceutics ; 11(9)2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31500147

RESUMEN

Over the past few decades, the amorphous solid dispersions (ASDs) technique has emerged as a promising strategy to enhance the in vitro/in vivo characteristic of hydrophobic drugs. The low aqueous solubility and poor bioavailability of atorvastatin calcium (ATO), a lipid-lowering drug, present challenges for effective drug delivery. The objective of this work was to improve the aqueous solubility, in vitro dissolution, and oral absorption of ATO with amorphous solid dispersion technique prepared by spray-drying method. The optimized ternary formulation comprising of ATO; hydroxypropyl methylcellulose (HPMC), as a hydrophilic polymer; and sodium lauryl sulfate (SLS), as a surfactant, at a weight ratio of 1/1/0.1, showed significant improvement in aqueous solubility by ~18-fold compared to that of the free drug, and a cumulative release of 94.09% compared to a release of 59.32% of the free drug. Further, physicochemical studies via scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction revealed a change from the crystalline state of the free drug to its amorphous state in the ASD. Pharmacokinetic analysis in rats demonstrated 1.68- and 2.39-fold increments in AUC and Cmax, respectively, in the ASD over the free drug. Altogether, hydrophilic carrier-based ASDs prepared by the spray-drying technique represent a promising strategy to improve the biopharmaceutical performance of poorly soluble drugs.

19.
Materials (Basel) ; 11(12)2018 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-30501070

RESUMEN

A novel 3D printing material based on hydroxypropyl methylcellulose (HPMC)-improved sulphoaluminate cement (SAC) for rapid 3D construction printing application is reported. The hydration heat, setting time, fluidity of paste and mortar, shape retainability, and compressive strength of extruded SAC mortar were investigated. HPMC dosage, water-to-cement (W/C) ratio, and sand-to-cement (S/C) ratio were studied as the experimental parameters. Hydration heat results reveal HPMC could delay the hydration of SAC. The initial and final setting time measured using Vicat needle would be shortened in the case of W/C ratio of 0.3 and 0.35 with HPMC dosage from 0.5% to 1.5%, W/C ratio of 0.40 with HPMC dosage of 0.5%, 0.75%, and 1.5%, and W/C ratio of 0.45 with HPMC dosage of 0.45, or be extended in the case of W/C ratio of 0.4 with HPMC dosage of 1.0% and W/C ratio of 0.45 with HPMC dosage from 0.75% to 1.5%. Fluidity measurement shows HPMC significantly improves the shape retainability. Furthermore, the addition of HPMC remarkably increased the compressive strength of extruded mortar. The results showed that HPMC could be used to prepare 3D printing SAC having satisfactory shape retainability, setting time and compressive strength.

20.
Int J Biol Macromol ; 120(Pt A): 945-951, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30193915

RESUMEN

Monosodium phosphate (MP), sodium citrate (SC), sodium lactate (SL) and magnesium citrate (MC) can be blended with hydroxypropyl methylcellulose (HPMC) to make photophobic (white) films at lower drying temperatures. Small angle X-ray scattering (SAXS), wide angle X-ray diffraction (XRD), scanning electron microscopy (SEM), whiteness determination, dynamic mechanical analysis (DMA) and texture analysis were adopted to study the variation of microstructures and properties. These four kinds of HPMC/salt films showed decreased crystallinity and increased compactness and smoothness of the self-similar structures in larger scale ranges. HPMC/MP, HPMC/SC and HPMC/SL film showed coarser and porous morphologies, lower mechanical parameters and higher whiteness than pure HPMC film. HPMC/MC film showed smoother morphologies, higher tensile strength, elongation and whiteness than pure HPMC film. Porous structures and more compact self-similar structures might contribute to the photophobic property of these films, and relatively smooth morphology might dominate the increasing mechanical parameters of HPMC/MC film.


Asunto(s)
Derivados de la Hipromelosa/química , Sales (Química)/química , Ácido Cítrico/química , Luz , Microscopía Electrónica de Rastreo , Compuestos Organometálicos/química , Fosfatos/química , Citrato de Sodio/química , Lactato de Sodio/química , Resistencia a la Tracción/efectos de la radiación , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA