Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 650(Pt 1): 1261-1277, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30308814

RESUMEN

Analyzing future changes in hydrologic extremes such as floods, low flows, and soil moisture extremes is important because many impacts on ecosystems and human systems occur during extreme events. To quantify changes in hydrologic extremes, this study conducts hydrologic modeling experiments over 20 Midwestern watersheds using the Variable Infiltration Capacity (VIC) model forced by historical observed datasets and future projections from statistically downscaled Global Climate Model (GCMs) simulations. Our results show that peak daily streamflow at the 100-yr reoccurrence interval will increase (+10-30%) in most watersheds by 2080s due to significant increases in precipitation (P) and increasing P as rainfall during winter and spring seasons. The simulations also show strong shifts towards earlier peak flow timing (up to a month), especially in strongly snowmelt-dominated watersheds. These effects are linked to strong decreasing trends in maximum Snow Water Equivalent (SWE) with warming, which are simulated over essentially the entire domain. Projected changes in 7-day extreme low flows are smaller in magnitude (-10-+10%) with somewhat larger decreases simulated at the end of century; however, the timing of extreme low flows is projected to shift from winter/spring to summer and fall in strongly snowmelt-dominated watersheds in the northernmost parts of the domain. Extreme low soil moisture increases over most of the domain in the future projections up to the 2050s, but by the 2080s there are more widespread decreases in extreme low soil moisture, especially in the northernmost parts of the domain.

2.
Sci Total Environ ; 633: 81-92, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29573694

RESUMEN

The dissolved organic matter (DOM) and nutrient dynamics in small mountainous rivers (SMRs) strongly depend on hydrologic conditions, and especially on extreme events. Here, we investigated the quantity and quality of DOM and inorganic nutrients during base-flow and typhoon events, in a chronically N-saturated mainstream and low N-loaded tributaries of a forested small mountainous reservoir catchment in Taiwan. Our results suggest that divergent transport mechanisms were triggered in the mainstream vs. tributaries during typhoons. The mainstream DON increased from 3.4 to 34.7% of the TDN pool with a static DOC:NO3-N ratio and enhanced DOM freshness, signalling a N-enriched DOM transport. Conversely, DON decreased from 46 to 6% of the TDN pool in the tributaries and was coupled with a rapid increase of the DOC:NO3-N ratio and humified DOM signals, suggesting the DON and DOC were passively and simultaneously transported. This study confirmed hydrology and spatial dimensions being the main drivers shaping the composition and concentration of DOM and inorganic nutrients in small mountainous catchments subject to hydrologic extremes. We highlighted that the dominant flow paths largely controlled the N-saturation status and DOM composition within each sub-catchment, the effect of land-use could therefore be obscured. Furthermore, N-saturation status and DOM composition are not only a result of hydrologic dynamics, but potential agents modifying the transport mechanism of solutes export from fluvial systems. We emphasize the importance of viewing elemental dynamics from the perspective of a terrestrial-aquatic continuum; and of taking hydrologic phases and individual catchment characteristics into account in water quality management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA