Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Regen Ther ; 26: 571-577, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39246699

RESUMEN

The objective of this study is to evaluate the effect of hydrogen gas on the biological functions of human adipose-derived stem cells (hADSC) in cryopreservation. hADSC were cryopreserved by a commercial cell preservation solution in the presence of hydrogen gas. After cryopreservation at -80 °C, the viability, initial attachment morphology, and biological parameters of cells cryopreserved were evaluated to compare with those of cells cryopreserved in the absence of hydrogen gas. The hydrogen concentration in the cell preservation solution was 2.0 ppm immediately after preparation and after that decreased with time. The presence of hydrogen gas permitted cells to significantly increase the proliferation of cells in addition to the percent initial adhesion. The number of cells in the spread state was significantly high compared with that of hydrogen gas-free cryopreserved cells. The cell cycle measurement with the flow cytometry and measurement of intracellular reactive oxygen species (ROS) were performed to demonstrate an enhanced cell cycle and a decreased ROS production. In the cell cycle assay, the percentage of cells in the mitotic phase increased. The presence of hydrogen gas decreased hydroxyl radicals immediately to a significantly great extent after thawing. It is concluded that the presence of hydrogen gas during cryopreservation is promising to improve the biological behavior of cells after cell thawing in terms of cells viability, proliferation or metabolic activity.

2.
Materials (Basel) ; 17(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39274772

RESUMEN

The development of a sensor capable of selectively detecting hydrogen levels in the environment holds immense importance for ensuring the safer utilization of hydrogen energy. In this study, a hydrogen sensor made of Ce-doped single-layer graphene (SLG)/SnO2 composite material was fabricated using a hydrothermal method. The study examined the impact of varying Ce doping concentrations on the hydrogen sensing capabilities of the SLG/SnO2 matrix. The results show that the SLG/SnO2 hydrogen sensor doped with 2 mol% Ce demonstrated optimal performance at a humidity of 20%. It operated most efficiently at 250 °C, with a response of 2.49, representing a 25.75% improvement over the undoped sample. The response/recovery times were 0.46/3.92 s, which are 54.9% shorter than those of the undoped sample. The enhancement in hydrogen sensitivity stems from the synergistic effect of Ce and SLG, which facilitates the coexistence of n-n and p-n heterojunctions, thereby increasing carrier mobility and refining grain structure. Analysis via X-ray photoelectron spectroscopy (XPS) reveals that Ce increases the material's oxygen vacancy concentration, enhancing its hydrogen sensitivity. Ce-doped SLG/SnO2, with its robust hydrogen sensitivity, represents one of the leading candidates for future hydrogen gas sensors.

3.
Sensors (Basel) ; 24(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39275763

RESUMEN

Photodetectors and gas sensors are vital in modern technology, spanning from environmental monitoring to biomedical diagnostics. This paper explores the UV detection and gas sensing properties of a zinc oxide (ZnO) nanorod array (ZNA) grown on silver nanowire mesh (AgNM) using a hydrothermal method. We examined the impact of different zinc acetate precursor concentrations on their properties. Results show the AgNM forms a network with high transparency (79%) and low sheet resistance (7.23 Ω/□). A sol-gel ZnO thin film was coated on this mesh, providing a seed layer with a hexagonal wurtzite structure. Increasing the precursor concentration alters the diameter, length, and area density of ZNAs, affecting their performance. The ZNA-AgNM-based photodetector shows enhanced dark current and photocurrent with increasing precursor concentration, achieving a maximum photoresponsivity of 114 A/W at 374 nm and a detectivity of 6.37 × 1014 Jones at 0.05 M zinc acetate. For gas sensing, the resistance of ZNA-AgNM-based sensors decreases with temperature, with the best hydrogen response (2.71) at 300 °C and 0.04 M precursor concentration. These findings highlight the potential of ZNA-AgNM for high-performance UV photodetectors and hydrogen gas sensors, offering an alternative way for the development of future sensing devices with enhanced performance and functionality.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39290658

RESUMEN

Inflammatory bowel disease (IBD) is a chronic disease characterised by repeated relapses and remissions and a high recurrence rate even after symptom resolution. The primary method for IBD diagnosis is endoscopy; however, this method is expensive, invasive, and cumbersome to use serially. Therefore, more convenient and non-invasive methods for IBD diagnosis are needed. In this study, we aimed to identify biological gas markers for the development of gut inflammation. Using dextran sulphate sodium (DSS)-induced colitis mouse models, five biological gases were analysed to identify predictive markers for the development of gut inflammation. Additionally, the correlation between the changes in gas composition, gut microbiota, and inflammatory markers was assessed. The hydrogen (H2) level was found to be negatively correlated with the level of lipocalin-2 (LCN2), a gut inflammation biomarker, and weight loss due to DSS-induced colitis. Furthermore, gut microbes belonging to the Rikenellaceae and Akkermansiaceae families were positively correlated with LCN2 levels and weight loss, whereas Tannerellaceae abundance was negatively correlated with LCN2 level and weight loss and positively correlated with H2 levels. This study provides new insights for IBD diagnosis; the H2 levels in biological gases are a potential biomarker for intestinal inflammation, and specific gut microbes are associated with H2 level changes.

5.
Life (Basel) ; 14(7)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39063551

RESUMEN

BACKGROUND: Kawasaki disease (KD) is a syndrome primarily affecting young children, typically under the age of five, and is characterized by the development of acute vasculitis. Through extensive research conducted on both murine and human subjects, it has been demonstrated that heightened levels of reactive oxygen species (ROS) play a pivotal role in the development of KD, especial coronary artery lesions (CALs). Hydrogen gas exhibits potent antioxidant properties that effectively regulate ROS production and the inflammatory response. METHODS: We used Lactobacillus casei cell wall extract (LCWE)-induced vasculitis in mice as an animal model of KD and treated the mice with hydrogen gas inhalation. RESULTS: We observed significant dilatation and higher Z scores in the left coronary artery (LCA) in D21 and D28 in mice after LCWE treatment compared to the control group (p < 0.001) and a significant resolution of LCA diameters (p < 0.01) and Z scores (p < 0.01) after treatment with inhaled hydrogen gas. We further demonstrated that serum IL-6 expression was higher in mice after LCWE treatment (p < 0.01) and IL-6 significantly decreased after inhaled hydrogen gas therapy (p < 0.001). CONCLUSION: According to our literature review, this is the first report where hydrogen gas inhalation has been demonstrated to be effective for the treatment of coronary artery dilatation in a KD murine model.

6.
Heliyon ; 10(13): e33796, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39050469

RESUMEN

Transportation relies heavily on petroleum products, forcing the adoption of alternative energy sources like hydrogen. Hydrogen is considered the cleanest fuel for the twenty-first century due to its water-based combustion and no CO2 emissions. However, challenges persist in production, utilization, and storage; employing composite material-based high-pressure storage vessels is increasing in the hydrogen storage sector. The paper analyzes the impact of the winding angles on the mechanical performance of the filament wound Type 4 composite pressure vessels (CPVs) for compressed hydrogen gas storage at 70 MPa. This work examines the individual winding angles and combined angles winding patterns to promote the efficiency of Type 4 CPVs by achieving maximum burst pressure, ensuring safe burst mode, and reducing CPV weight by applying maximum principal stress theory with the aid of the Ansys ACP Prep/Post and static modules. The weight and burst pressure of CPVs are significantly influenced by fiber orientation; a combination of positive and negative helical winding angles promotes higher burst pressure at a lower weight. A hoop angle and intermediate helical angles can be combined to create high-efficiency CPVs that provide mechanical performance comparable to that of a combination of high and low helical angles. Finally, a one-factor-at-a-time (OAT) sensitivity analysis was performed to determine how the winding angle and the thicknesses of layers affect the CPVs' performance. It was found that the performance of the CPVs is significantly influenced by the thicknesses of the wound layers.

7.
Respir Res ; 25(1): 281, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014440

RESUMEN

BACKGROUND: As a subtype of pulmonary hypertension (PH), pulmonary veno-occlusive disease (PVOD) is devastating and life-threatening disease without effective therapy. Hydrogen has been reported to exhibits antioxidant and anti-inflammatory effects in a rat model induced by monocrotaline of PH. In this study, we investigated the effects of inhaled hydrogen gas on the prevention and treatment of PVOD induced by mitomycin C (MMC) in rats. METHODS: PVOD was induced in female Sprague-Dawley rats through intraperitoneal injection of MMC at a concentration of 3 mg·kg- 1·wk- 1 for 2 weeks. Inhalation of hydrogen gas (H2) was administered through a designed rat cage concurrently or two weeks after MMC administration. The severity of PVOD was assessed by using hemodynamic measurements and histological analysis. The expression levels of general control nonderepressible 2 (GCN2), nuclear factor erythroid 2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1) and endothelial-to-mesenchymal transition (EndoMT) related proteins in lung tissue were measured. Levels of lipid peroxidation pro-inflammatory cytokines in serum were determined. RESULTS: Inhaled H2 improved hemodynamics and right heart function, reversed right ventricular hypertrophy, and prevented pulmonary vessel reconstitution in both prevention and treatment approaches. It decreased malondialdehyde (MDA) levels in the serum and the expression of NADPH oxidase 1 (NOX-1) in lung tissue. It regulated Nrf2/HO-1 signaling pathway and anti-inflammatory factor GCN2 in lung tissue, accompanied by a decrease in macrophages and pro-inflammatory cytokines. Our data suggested that H2 inhalation effectively countered EndoMT induced by MMC, as evidenced by the detection of endothelial markers (e.g., VE-cadherin and CD31) and mesenchymal markers (e.g., vimentin and fibronectin). Further research revealed that H2 preserved p-Smad3 and induced p-Smad1/5/9. CONCLUSION: Inhalation of H2 effectively inhibits the pathogenesis of PVOD induced by MMC in rats. This inhibitory effect may be attributed to the antioxidant and anti-inflammatory properties of H2.


Asunto(s)
Hidrógeno , Mitomicina , Enfermedad Veno-Oclusiva Pulmonar , Ratas Sprague-Dawley , Animales , Hidrógeno/farmacología , Hidrógeno/administración & dosificación , Femenino , Administración por Inhalación , Ratas , Mitomicina/administración & dosificación , Enfermedad Veno-Oclusiva Pulmonar/inducido químicamente , Enfermedad Veno-Oclusiva Pulmonar/prevención & control , Modelos Animales de Enfermedad , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología
8.
Cell ; 187(12): 2952-2968.e13, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38795705

RESUMEN

Recent studies suggest that human-associated bacteria interact with host-produced steroids, but the mechanisms and physiological impact of such interactions remain unclear. Here, we show that the human gut bacteria Gordonibacter pamelaeae and Eggerthella lenta convert abundant biliary corticoids into progestins through 21-dehydroxylation, thereby transforming a class of immuno- and metabo-regulatory steroids into a class of sex hormones and neurosteroids. Using comparative genomics, homologous expression, and heterologous expression, we identify a bacterial gene cluster that performs 21-dehydroxylation. We also uncover an unexpected role for hydrogen gas production by gut commensals in promoting 21-dehydroxylation, suggesting that hydrogen modulates secondary metabolism in the gut. Levels of certain bacterial progestins, including allopregnanolone, better known as brexanolone, an FDA-approved drug for postpartum depression, are substantially increased in feces from pregnant humans. Thus, bacterial conversion of corticoids into progestins may affect host physiology, particularly in the context of pregnancy and women's health.


Asunto(s)
Microbioma Gastrointestinal , Glucocorticoides , Hidrógeno , Progestinas , Humanos , Progestinas/metabolismo , Hidrógeno/metabolismo , Femenino , Glucocorticoides/metabolismo , Embarazo , Animales , Familia de Multigenes , Heces/microbiología , Pregnanolona/metabolismo , Ratones
9.
Polymers (Basel) ; 16(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38674985

RESUMEN

This study investigated the synergistic effect of carbon black/multi-wall carbon nanotube (CB/MWCNT) hybrid fillers on the physical and mechanical properties of Ethylene propylene diene rubber (EPDM) composites after exposure to high-pressure hydrogen gas. The EPDM/CB/CNT hybrid composites were prepared by using the EPDM/MWCNT master batch (MB) with 10 phr CNTs to enhance the dispersion of CNTs in hybrid composites. The investigation included a detailed analysis of cure characteristics, crosslink density, Payne effect, mechanical properties, and hydrogen permeation properties. After exposure to 96.3 MPa hydrogen gas, the hydrogen uptake and the change in volume and mechanical properties of the composites were assessed. We found that as the MWCNT volume fraction in fillers increased, the crosslink density, filler-filler interaction, and modulus of hybrid composites increased. The hydrogen uptake and the solubility of the composites decreased with an increasing MWCNT volume fraction in fillers. Moreover, after exposure to hydrogen gas, the change in volume and mechanical properties exhibited a diminishing trend with a higher MWCNT volume fraction. We conclude that the hybridization of CB and CNTs formed strong filler-filler networks in hybrid composites, consequently reinforcing the EPDM composites and enhancing the barrier properties of hydrogen gas.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38676629

RESUMEN

Gas crossover is critical in proton exchange membrane (PEM)-based electrochemical systems. Recently, single-layer graphene (SLG) has gained great research interest due to its outstanding properties as a barrier layer for small molecules like hydrogen. However, the applicability of SLG as a gas-blocking interlayer in PEMs has yet to be fully understood. In this work, two different approaches for transferring SLG from a copper or a polymeric substrate onto PEMs are compared regarding their application in low-temperature PEM fuel cells. The SLG is sandwiched between two Nafion XL membranes to form a stable composite membrane. The successful transfer is confirmed by Raman spectroscopy and in ex situ hydrogen permeation experiments in the dry state, where a reduction of 50% upon SLG incorporation is achieved. The SLG composite membranes are characterized by their performance and hydrogen-blocking ability in a fuel cell setup at typical operating conditions of 80 °C and with fully humidified gases. The performance of the fuel cell incorporating an SLG composite membrane is equal to that of the reference cell when avoiding the direct etching process from a copper substrate, as remnants from copper etching deteriorate the performance of the fuel cell. For both transfer processes, the hydrogen crossover reduction of SLG composite membranes is only 15-19% (1.5 barabs) in the operating fuel cell. Further, hydrogen pumping experiments suggest that the barrier function of SLG impairs the water transport through the membrane, which may affect water management in electrochemical applications. In summary, this work shows the successful transfer of SLG into a PEM and confirms the effective hydrogen-blocking capability of the SLG interlayer. However, the hydrogen-blocking ability is significantly reduced when running the cell at the typical humidified operating conditions of PEM fuel cells, which follows from a combination of reversible interlayer alteration upon humidification and irreversible defect formation upon PEM fuel cell operation.

11.
Sensors (Basel) ; 24(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38544253

RESUMEN

We have investigated a polarization property of the (specularly) reflected light from an aluminum grating, coated with a palladium (Pd) thin-film on its surface. The polarization property, which is associated with surface plasmon resonance (SPR), and occurs in the Pd thin-film on the aluminum grating in a conical mounting, is observed as a rapid change in the normalized Stokes parameter s3, around the resonance angle, θsp, at which point, SPR occurs. The sensing technique used the rapid change in s3 to allow us to successfully detect a small change in the complex refractive index of the Pd thin-film layer upon exposure to hydrogen gas, with a concentration near the lower explosion level. Experimental results showed that the sensing technique provided a sensitive and stable response when the Pd thin-film layer was exposed to gas mixtures containing hydrogen at concentrations of 1 to 4% (by volume) in nitrogen.

12.
Heliyon ; 10(6): e27479, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38496883

RESUMEN

This paper proposes a technical and cost analysis model to assess the change in costs of a zero-emission high-speed ferry when retrofitting from diesel to green hydrogen. Both compressed gas and liquid hydrogen are examined. Different scenarios explore energy demand, energy losses, fuel consumption, and cost-effectiveness. The methodology explores how variation in the ferry's total weight and equipment efficiency across scenarios impact results. Applied to an existing diesel high-speed ferry on one of Norway's longest routes, the study, under certain assumptions, identifies compressed hydrogen gas as the current most economical option, despite its higher energy consumption. Although the energy consumption of the compressed hydrogen ferry is slightly more than the liquid hydrogen counterpart, its operating expenses are considerably lower and comparable to the existing diesel ferry on the route. However, constructing large hydrogen liquefaction plants could reduce liquid hydrogen's cost and make it competitive with both diesel and compressed hydrogen gas. Moreover, liquid hydrogen allows the use of a superconducting motor to enhance efficiency. Operating the ferry with liquid hydrogen and a superconducting motor, besides its technical advantages, offers promising economic viability in the future, comparable to diesel and compressed hydrogen gas options. Reducing the ferry's speed and optimizing equipment improves fuel efficiency and economic viability. This research provides valuable insights into sustainable, zero-emission high-speed ferries powered by green hydrogen.

13.
Neurophotonics ; 11(1): 015009, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38515930

RESUMEN

Significance: Prefrontal cortex (PFC) hemodynamics are regulated by numerous underlying neurophysiological components over multiple temporal scales. The pattern of output signals, such as functional near-infrared spectroscopy fluctuations (i.e., fNIRS), is thus complex. We demonstrate first-of-its-kind evidence that this fNIRS complexity is a marker that captures the influence of endurance capacity and the effects of hydrogen gas (H2) on PFC regulation. Aim: We aim to explore the effects of different physical loads of exercise as well as the intaking of hydrogen gas on the fNIRS complexity of the PFC. Approach: Twenty-four healthy young men completed endurance cycling exercise from 0 (i.e., baseline) to 100% of their physical loads after intaking 20 min of either H2 or placebo gas (i.e., control) on each of two separate visits. The fNIRS measuring the PFC hemodynamics and heart rate (HR) was continuously recorded throughout the exercise. The fNIRS complexity was quantified using multiscale entropy. Results: The fNIRS complexity was significantly greater in the conditions from 25% to 100% of the physical load (p<0.0005) compared with the baseline and after intaking H2 before exercise; this increase of fNIRS complexity was significantly greater compared with the control (p=0.001∼0.01). At the baseline, participants with a greater fNIRS complexity had a lower HR (ß=-0.35∼-0.33, p=0.008∼0.02). Those with a greater increase of complexity had a lower increase of the HR (ß=-0.30∼-0.28, p=0.001∼0.002) during exercise. Conclusions: These observations suggest that fNIRS complexity would be a marker that captures the adaptive capacity of PFC to endurance exercise and to the effects of interventions on PFC hemodynamics.

14.
J Anesth ; 38(4): 455-463, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38493423

RESUMEN

PURPOSE: This study aimed to determine whether the combination of H2 gas inhalation and administration of hydrogen-rich acetated Ringer's solution (HS) could protect against ischemic spinal cord injury in rabbits. METHODS: In Experiment 1, rabbits were randomly assigned to a 1.2% H2 gas group, HS group, 1.2% H2 gas + HS group (combination group), or control group (n = 6 per group). The H2 concentration of HS was 0.65 mM. H2 was inhaled for 60 min, starting 5 min before reperfusion. HS (20 mL/kg) was divided into six bolus injections at 10-min intervals, starting 5 min before reperfusion. Spinal cord ischemia was produced by occluding the abdominal aorta for 15 min. Neurologic and histopathologic evaluations were performed 7 days after reperfusion. In Experiment 2, H2 concentrations in spinal cord tissue according to the administration of 1.2% H2 gas or HS were compared by measuring the electric current through a platinum needle electrode (n = 2). In Experiment 3, rabbits were assigned to a 2% H2 gas group or control group (n = 6 per group). Spinal cord ischemia was produced and neurologic and histopathologic evaluations were performed as in Experiment 1. RESULTS: There were no significant differences among the groups in the neurologic and histopathologic outcomes in Experiments 1 and 3. Bolus administration of HS (10 mL) transiently increased the current to only 1/30th and 1/27th of the plateau current with 1.2% H2 gas inhalation in two animals. CONCLUSION: These results suggest that the combination of 1.2% H2 gas inhalation and administration of a hydrogen-rich solution does not protect against ischemic spinal cord injury and that the increase in H2 concentration in spinal cord tissue after administration of HS is very low compared to 1.2% H2 gas inhalation.


Asunto(s)
Hidrógeno , Isquemia de la Médula Espinal , Animales , Conejos , Hidrógeno/administración & dosificación , Hidrógeno/farmacología , Isquemia de la Médula Espinal/prevención & control , Masculino , Solución de Ringer/administración & dosificación , Traumatismos de la Médula Espinal/prevención & control , Médula Espinal/efectos de los fármacos , Modelos Animales de Enfermedad , Administración por Inhalación , Daño por Reperfusión/prevención & control
15.
Anal Bioanal Chem ; 416(16): 3697-3715, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38443743

RESUMEN

In recent years, the energy crisis has made the world realize the importance and need for green energy. Hydrogen safety has always been a primary issue that needs to be addressed for the application and large-scale commercialization of hydrogen energy, and precise and rapid hydrogen gas sensing technology and equipment are important prerequisites for ensuring hydrogen safety. Based on metal oxide semiconductors (MOS), resistive hydrogen gas sensors (HGS) offer advantages, such as low cost, low power consumption, and high sensitivity. They are also easy to test, integrate, and suitable for detecting low concentrations of hydrogen gas in ambient air. Therefore, they are considered one of the most promising HGS. This article provides a comprehensive review of the surface reaction mechanisms and recent research progress in optimizing the gas sensing performance of MOS-based resistive hydrogen gas sensors (MOS-R-HGS). Particularly, the advancements in metal-assisted or doped MOS, mixed metal oxide (MO)-MOS composites, MOS-carbon composites, and metal-organic framework-derived (MOF)-MOS composites are extensively summarized. Finally, the future research directions and possibilities in this field are discussed.

16.
Heliyon ; 10(3): e24647, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38356549

RESUMEN

This study is focused on reducing total chromium level in tannery wastewater through the electrocoagulation process, in order to comply with the maximum permissible limits (MPL) and to determine the effects from its main operating factors. For this purpose, a batch electrocoagulation reactor was manufactured using iron electrodes. Next, the response surface methodology was applied in the experimental design using a Box-Behnken design (BBD) with three factors: current intensity, treatment time, and pH level. In addition, the total chromium removal percentage was taken as a response variable. The corresponding statistical analysis revealed that the treatment time, current intensity, and pH level variables were significant at a confidence level of P-value<0.05. Obtained in this study for a 99% total chromium removal were: current intensity (I)=2.9A, time (t)=18.1min, and pH=5.6. Our results indicated that the electrocoagulation process effectively removes total chromium from tannery effluents up to MPL values.

17.
Medicina (Kaunas) ; 60(2)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38399533

RESUMEN

Background and Objectives: Recent studies suggest that hydrogen gas possesses anti-inflammatory, antioxidant, and anti-apoptotic properties. This study aimed to explore the therapeutic potential of hydrogen gas and assess its safety and tolerability in individuals with chronic obstructive pulmonary disease (COPD). Materials and Methods: Enrolled COPD patients received standard treatments along with additional hydrogen inhalation for 30 min in the morning, afternoon, and evening over a 30-day period. The assessment included changes in the COPD Assessment Test (CAT), the modified Medical Research Council (mMRC) Dyspnea Scale, lung function, sleep quality, inflammation markers, and oxidative stress markers before and after hydrogen inhalation. Results: Six patients participated in this study. Patients 2, 3, 4, 5, and 6 demonstrated improvements in CAT scores following hydrogen gas intervention, with patients 2, 4, 5, and 6 also showing improvements in mMRC scores. Statistically, this study revealed significant improvements in CAT [15.5 (10.5-19.75) vs. 8.5 (3-13.5); p = 0.043] and mMRC scores [2.5 (1-4) vs. 2 (0-3.25); p = 0.046] before and after intervention, respectively. However, no significant differences were observed in lung function, DLCO, sleep quality, and 6 MWT before and after hydrogen therapy. CBC examination showed a significant difference in platelet count before and after treatment [247 (209.75-298.75) vs. 260 (232.75-314.5); p = 0.043], respectively, while other blood tests, inflammation markers, and oxidative stress markers did not exhibit significant differences before and after hydrogen therapy. All patients experienced no obvious side-effects. Conclusions: Adjuvant therapy with hydrogen gas demonstrated symptom improvements in specific COPD patients, and no significant adverse effects were observed in any of the patients. Hydrogen gas may also exert a modulatory effect on platelet count.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Volumen Espiratorio Forzado , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Atención Odontológica , Inflamación , Terapia Combinada , Índice de Severidad de la Enfermedad
18.
BMC Anesthesiol ; 24(1): 72, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395800

RESUMEN

BACKGROUND: Approximately 40 to 60% of patients with sepsis develop sepsis-induced cardiomyopathy (SIC), which is associated with a substantial increase in mortality. We have found that molecular hydrogen (H2) inhalation improved the survival rate and cardiac injury in septic mice. However, the mechanism remains unclear. This study aimed to explore the regulatory mechanism by which hydrogen modulates autophagy and its role in hydrogen protection of SIC. METHODS: Cecal ligation and puncture (CLP) was used to induce sepsis in adult C57BL/6J male mice. The mice were randomly divided into 4 groups: Sham, Sham + 2% hydrogen inhalation (H2), CLP, and CLP + H2 group. The 7-day survival rate was recorded. Myocardial pathological scores were calculated. Myocardial troponin I (cTnI) levels in serum were detected, and the levels of autophagy- and mitophagy-related proteins in myocardial tissue were measured. Another four groups of mice were also studied: CLP, CLP + Bafilomycin A1 (BafA1), CLP + H2, and CLP + H2 + BafA1 group. Mice in the BafA1 group received an intraperitoneal injection of the autophagy inhibitor BafA1 1 mg/kg 1 h after operation. The detection indicators remained the same as before. RESULTS: The survival rate of septic mice treated with H2 was significantly improved, myocardial tissue inflammation was improved, serum cTnI level was decreased, autophagy flux was increased, and mitophagy protein content was decreased (P < 0.05). Compared to the CLP + H2 group, the CLP + H2 + BafA1 group showed a decrease in autophagy level and 7-day survival rate, an increase in myocardial tissue injury and cTnI level, which reversed the protective effect of hydrogen (P < 0.05). CONCLUSION: Hydrogen exerts protective effect against SIC, which may be achieved through the promotion of autophagy and mitophagy.


Asunto(s)
Cardiomiopatías , Sepsis , Humanos , Ratones , Masculino , Animales , Ratones Endogámicos C57BL , Autofagia , Cardiomiopatías/etiología , Cardiomiopatías/prevención & control , Sepsis/complicaciones , Sepsis/patología , Hidrógeno/farmacología , Hidrógeno/uso terapéutico
19.
Nano Lett ; 24(5): 1729-1737, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38289279

RESUMEN

Rechargeable hydrogen gas batteries, driven by hydrogen evolution and oxidation reactions (HER/HOR), are emerging grid-scale energy storage technologies owing to their low cost and superb cycle life. However, compared with aqueous electrolytes, the HER/HOR activities in nonaqueous electrolytes have rarely been studied. Here, for the first time, we develop a nonaqueous proton electrolyte (NAPE) for a high-performance hydrogen gas-proton battery for all-climate energy storage applications. The advanced nonaqueous hydrogen gas-proton battery (NAHPB) assembled with a representative V2(PO4)3 cathode and H2 anode in a NAPE exhibits a high discharge capacity of 165 mAh g-1 at 1 C at room temperature. It also efficiently operates under all-climate conditions (from -30 to +70 °C) with an excellent electrochemical performance. Our findings offer a new direction for designing nonaqueous proton batteries in a wide temperature range.

20.
Graefes Arch Clin Exp Ophthalmol ; 262(3): 823-833, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37851131

RESUMEN

PURPOSE: To investigate the inhibitory effect of hydrogen gas inhalation on retinal ischemia reperfusion (I/R) injury using a rat model. METHODS: Six-week-old male Sprague-Dawley rats were used. A 27G needle connected by a tube to a saline bottle placed 200 cm above the eye was inserted into the anterior eye chamber to create a rat retinal I/R model. In the ischemia-plus-hydrogen-gas group (H2( +) group), the ischemia time was set to 90 min, and 1.8% hydrogen was added to the air delivered by the anesthesia mask simultaneously with the start of ischemia. In the non-hydrogen-treatment ischemia group (H2( -) group), I/R injury was created similarly, but only air was inhaled. ERGs were measured; after removal of the eyes, the retina was examined for histological, immunostaining, and molecular biological analyses. RESULTS: The mean thickness of the inner retinal layer in the H2( +) group was 107.2 ± 16.0 µm (n = 5), significantly greater than that in the H2( -) group (60.8 ± 6.7 µm). Immunostaining for Iba1 in the H2( -) group showed increased numbers of microglia and microglial infiltration into the subretinal space, while there was no increase in microglia in the H2( +) group. B-wave amplitudes in the H2( +) group were significantly higher than in the H2( -) group. In the membrane antibody array, levels of interleukin-6, monocyte chemotactic protein 1, and tumor necrosis factor alpha were significantly lower in the H2( +) group than in the H2( -) group. CONCLUSION: Inhalation of 1.8% hydrogen gas inhibited the induction of inflammation, morphological/structural changes, and glial cell increase caused by retinal I/R injury.


Asunto(s)
Hidrógeno , Daño por Reperfusión , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Hidrógeno/metabolismo , Hidrógeno/farmacología , Retina/patología , Daño por Reperfusión/prevención & control , Isquemia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA