Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(32): 21376-21387, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39088237

RESUMEN

Water under soft nanoconfinement features physical and chemical properties fundamentally different from bulk water; yet, the multitude and specificity of confining systems and geometries mask any of its potentially universal traits. Here, we advance in this quest by resorting to lipidic mesophases as an ideal nanoconfinement system, allowing inspecting the behavior of water under systematic changes in the topological and geometrical properties of the confining medium, without altering the chemical nature of the interfaces. By combining Terahertz absorption spectroscopy experiments and molecular dynamics simulations, we unveil the presence of universal laws governing the physics of nanoconfined water, recapitulating the data collected at varying levels of hydration and nanoconfinement topologies. This geometry-independent universality is evidenced by the existence of master curves characterizing both the structure and dynamics of simulated water as a function of the distance from the lipid-water interface. Based on our theoretical findings, we predict a parameter-free law describing the amount of interfacial water against the structural dimension of the system (i.e., the lattice parameter), which captures both the experimental and numerical results within the same curve, without any fitting. Our results offer insight into the fundamental physics of water under soft nanoconfinement and provide a practical tool for accurately estimating the amount of nonbulk water based on structural experimental data.

2.
Adv Mater ; 36(35): e2405981, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38970528

RESUMEN

Ferroelectric materials, traditionally comprising inorganic ceramics and polymers, are commonly used in medical implantable devices. However, their nondegradable nature often necessitates secondary surgeries for removal. In contrast, ferroelectric molecular crystals have the advantages of easy solution processing, lightweight, and good biocompatibility, which are promising candidates for transient (short-term) implantable devices. Despite these benefits, the discovered biodegradable ferroelectric materials remain limited due to the absence of efficient design strategies. Here, inspired by the polar structure of polyvinylidene fluoride (PVDF), a ferroelectric molecular crystal 1H,1H,9H,9H-perfluoro-1,9-nonanediol (PFND), which undergoes a cubic-to-monoclinic ferroelectric plastic phase transition at 339 K, is discovered. This transition is facilitated by a 2D hydrogen bond network formed through O-H···O interactions among the oriented PFND molecules, which is crucial for the manifestation of ferroelectric properties. In this sense, by reducing the number of -CF2- groups from ≈5 000 in PVDF to seven in PFND, it is demonstrated that this ferroelectric compound only needs simple solution processing while maintaining excellent biosafety, biocompatibility, and biodegradability. This work illuminates the path toward the development of new biodegradable ferroelectric molecular crystals, offering promising avenues for biomedical applications.

3.
Angew Chem Int Ed Engl ; 63(34): e202405738, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38850230

RESUMEN

The anion exchange membrane water electrolysis is widely regarded as the next-generation technology for producing green hydrogen. The OH- conductivity of the anion exchange membrane plays a key role in the practical implementation of this device. Here, we present a series of Z-S-x membranes with dibenzothiophene groups. These membranes contain sulfur-enhanced hydrogen bond networks that link surrounding surface site hopping regions, forming continuous OH- conducting highways. Z-S-20 has a high through-plane OH- conductivity of 182±28 mS cm-1 and ultralong stability of 2650 h in KOH solution at 80 °C. Based on rational design, we achieved a high PGM-free alkaline water electrolysis performance of 7.12 A cm-2 at 2.0 V in a flow cell and demonstrated durability of 650 h at 2 A cm-2 at 40 °C with a cell voltage increase of 0.65 mV/h.

4.
J Biol Chem ; 300(7): 107475, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38879008

RESUMEN

Photosystem II (PSII) is the water-plastoquinone photo-oxidoreductase central to oxygenic photosynthesis. PSII has been extensively studied for its ability to catalyze light-driven water oxidation at a Mn4CaO5 cluster called the oxygen-evolving complex (OEC). Despite these efforts, the complete reaction mechanism for water oxidation by PSII is still heavily debated. Previous mutagenesis studies have investigated the roles of conserved amino acids, but these studies have lacked a direct structural basis that would allow for a more meaningful interpretation. Here, we report a 2.14-Å resolution cryo-EM structure of a PSII complex containing the substitution Asp170Glu on the D1 subunit. This mutation directly perturbs a bridging carboxylate ligand of the OEC, which alters the spectroscopic properties of the OEC without fully abolishing water oxidation. The structure reveals that the mutation shifts the position of the OEC within the active site without markedly distorting the Mn4CaO5 cluster metal-metal geometry, instead shifting the OEC as a rigid body. This shift disturbs the hydrogen-bonding network of structured waters near the OEC, causing disorder in the conserved water channels. This mutation-induced disorder appears consistent with previous FTIR spectroscopic data. We further show using quantum mechanics/molecular mechanics methods that the mutation-induced structural changes can affect the magnetic properties of the OEC by altering the axes of the Jahn-Teller distortion of the Mn(III) ion coordinated to D1-170. These results offer new perspectives on the conserved water channels, the rigid body property of the OEC, and the role of D1-Asp170 in the enzymatic water oxidation mechanism.


Asunto(s)
Dominio Catalítico , Complejo de Proteína del Fotosistema II , Agua , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/genética , Agua/metabolismo , Agua/química , Oxidación-Reducción , Mutación , Microscopía por Crioelectrón , Manganeso/metabolismo , Manganeso/química
5.
Int J Biol Macromol ; 273(Pt 2): 132892, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878921

RESUMEN

TASK-3 generates a background K+ conductance which when inhibited by acidification depolarizes membrane potential and increases cell excitability. These channels sense pH by protonation of histidine residue H98, but recent evidence revealed that several other amino acid residues also contribute to TASK-3 pH sensitivity, suggesting that the pH sensitivity is determined by an intermolecular network. Here we use electrophysiology and molecular modeling to characterize the nature and requisite role(s) of multiple amino acids in pH sensing by TASK-3. Our results suggest that the pH sensor H98 and consequently pH sensitivity is influenced by remote amino acids that function as a hydrogen-bonding network to modulate ionic conductivity. Among the residues in the network, E30 and K79 are the most important for passing external signals near residue S31 to H98. The hydrogen-bond network plays a key role in selectivity or pH sensing in mTASK-3, and E30 and S31 in the network can modulate the conductive properties (E30) or reverse the pH sensitivity and selectivity of the channel (S31). Molecular dynamics simulations and pK1/2 calculation revealed that double mutants involving H98 + S31 primarily regulate the structure stability of the pore selectivity filter and pore loop regions, further strengthen the stability of the cradle suspension system, and alter the ionization state of E30 and K79, thereby preventing pore conformational change that normally occurs in response to varying extracellular pH. These results demonstrate that crucial residues in the hydrogen-bond network can remotely tune the pH sensing of mTASK-3 and may be a potential allosteric regulatory site for therapeutic molecule development.


Asunto(s)
Enlace de Hidrógeno , Simulación de Dinámica Molecular , Canales de Potasio de Dominio Poro en Tándem , Concentración de Iones de Hidrógeno , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Humanos , Mutación , Animales
6.
Water Res ; 257: 121707, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705067

RESUMEN

Solar steam generation (SSG) using hydrogels is emerging as a promising technology for clean water production. Herein, a novel oxygen-doped microporous carbon hydrogel (OPCH), rich in hydrophilic groups and micropores, has been synthesized from microalgae to optimize SSG. OPCH outperforms hydrogels with hydrophobic porous carbon or nonporous hydrophilic biochar, significantly reducing water's evaporation enthalpy from 2216.06 to 1107.88 J g-1 and activating 42.3 g of water per 100 g for evaporation, resulting in an impressive evaporation rate of 2.44 kg m-2 h-1 under one sun. A detailed investigation into the synergistic effects of hydrophilic groups and micropores on evaporation via a second derivative thermogravimetry method revealed two types of bonded water contributing to enthalpy reduction. Molecular dynamics simulations provided further insights, revealing that the hydrophilic micropores considerably decrease both the number and the lifetime of hydrogen bonds among water molecules. This dual effect not only reduces the energy barrier for evaporation but also enhances the kinetic energy needed for the phase transition, significantly boosting the water evaporation process. The sustained high evaporation rates of OPCH, observed across multiple cycles and under varying salinity conditions, underscore its potential as a highly efficient and sustainable solution for SSG applications.


Asunto(s)
Carbono , Hidrogeles , Interacciones Hidrofóbicas e Hidrofílicas , Vapor , Agua , Hidrogeles/química , Carbono/química , Porosidad , Agua/química , Simulación de Dinámica Molecular
7.
Int J Biol Macromol ; 268(Pt 1): 131729, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653429

RESUMEN

In this case, various characterization technologies have been employed to probe dissociation mechanism of cellulose in N,N-dimethylacetamide/lithium chloride (DMAc/LiCl) system. These results indicate that coordination of DMAc ligands to the Li+-Cl- ion pair results in the formation of a series of Lix(DMAc)yClz (x = 1, 2; y = 1, 2, 3, 4; z = 1, 2) complexes. Analysis of interaction between DMAc ligand and Li center indicate that Li bond plays a major role for the formation of these Lix(DMAc)yClz complexes. And the saturation and directionality of Li bond in these Lix(DMAc)yClz complexes are found to be a tetrahedral structure. The hydrogen bonds between two cellulose chains could be broken at the nonreduced end of cellulose molecule via combined effects of basicity of Cl- ion and steric hindrance of [Li (DMAc)4]+ unit. The unique feature of Li bond in Lix(DMAc)yClz complexes is a key factor in determination of the dissociation mechanism.


Asunto(s)
Acetamidas , Celulosa , Cloruro de Litio , Celulosa/química , Acetamidas/química , Cloruro de Litio/química , Litio/química , Enlace de Hidrógeno
8.
Angew Chem Int Ed Engl ; 63(21): e202316991, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38520357

RESUMEN

Conventional strategies for highly efficient and selective CO2 photoreduction focus on the design of catalysts and cocatalysts. In this study, we discover that hydrogen bond network breakdown in reaction system can suppress H2 evolution, thereby improving CO2 photoreduction performance. Photosensitive poly(ionic liquid)s are designed as photocatalysts owing to their strong hydrogen bonding with solvents. The hydrogen bond strength is tuned by solvent composition, thereby effectively regulating H2 evolution (from 0 to 12.6 mmol g-1 h-1). No H2 is detected after hydrogen bond network breakdown with trichloromethane or tetrachloromethane as additives. CO production rate and selectivity increase to 35.4 mmol g-1 h-1 and 98.9 % with trichloromethane, compared with 0.6 mmol g-1 h-1 and 26.2 %, respectively, without trichloromethane. Raman spectroscopy and theoretical calculations confirm that trichloromethane broke the systemic hydrogen bond network and subsequently suppressed H2 evolution. This hydrogen bond network breakdown strategy may be extended to other catalytic reactions involving H2 evolution.

9.
Chem Asian J ; 19(6): e202301116, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38303566

RESUMEN

An unprecedented meglumine-based three-component deep eutectic solvent (3c-DES) (MegPAc) was synthesized using meglumine, p-toluenesulfonic acid (PTSA), and acetic acid as a renewable, and non-toxic solvent. The exploitation of the MegPAc as an eco-friendly reaction media to construct a selective and sensitive small organic molecular sensing probe, namely, pyrazolo[5,1-b]quinazoline-3-carboxylates (PQCs) was executed. Captivatingly, the MegPAc served the dual role of solvent and catalyst, and it delivered the title components with 69-94 % yields within 67-150 minutes. Furthermore, a UV-visible study unfolds the selective detection of Cu2+ ions with our synthetic probe 4 ba and resulted in hypsochromic shift due to electrostatic interactions. Additionally, 1H NMR titration study and density functional theory (DFT) calculations were performed to attest the binding mechanism of sensing probe 4 ba and Cu2+ ions. Worthy of mention, this protocol unveils the efficacy of meglumine-based 3c-DES for the first time as a bio-renewable system to synthesize the PQCs.

10.
Angew Chem Int Ed Engl ; 63(17): e202319462, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38286750

RESUMEN

Developing highly active oxygen evolution reaction (OER) catalysts in acidic conditions is a pressing demand for proton-exchange membrane water electrolysis. Manipulating proton character at the electrified interface, as the crux of all proton-coupled electrochemical reactions, is highly desirable but elusive. Herein we present a promising protocol, which reconstructs a connected hydrogen-bond network between the catalyst-electrolyte interface by coupling hydrophilic units to boost acidic OER activity. Modelling on N-doped-carbon-layer clothed Mn-doped-Co3O4 (Mn-Co3O4@CN), we unravel that the hydrogen-bond interaction between CN units and H2O molecule not only drags the free water to enrich the surface of Mn-Co3O4 but also serves as a channel to promote the dehydrogenation process. Meanwhile, the modulated local charge of the Co sites from CN units/Mn dopant lowers the OER barrier. Therefore, Mn-Co3O4@CN surpasses RuO2 at high current density (100 mA cm-2 @ ~538 mV).

11.
Adv Mater ; 36(9): e2310690, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38048484

RESUMEN

Designing robust bifunctional catalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction in all-pH conditions for overall water splitting (OWS) is an effective way to achieve sustainable development. Herein, a composite Ru-VO2 containing Ru-doped VO2 and Ru nanoparticles (NPs) is synthesized, and it shows a high OWS performance in full-pH range due to their synergist effect. In particular, the OER mass activities of Ru-VO2 at 1.53 V (vs RHE) in acidic, alkaline, and PBS solutions are ≈65, 36, and 235 times of commercial RuO2 in the same conditions. The "Ru-VO2 || Ru-VO2 " two-electrode electrolyzer only needs a voltage of 1.515 V (at 10 mA cm-2 ) in acidic water splitting, which can operate stably for 125 h at 10 mA cm-2 without significant voltage decay. In situ Raman spectra and in situ differential electrochemical mass spectrometry prove that the OER of Ru-VO2 in acid follows the adsorption evolution mechanism. Density functional theory calculations further reveal the synergistic effect between Ru NP and Ru-doped VO2 , which breaks the hydrogen bond network formed by *OH adsorbed on the Ru single-atom site, and thereby significantly enhances the OER activity. This work provides new insights into the design of novel bifunctional pH-universal catalysts for OWS.

12.
ACS Appl Mater Interfaces ; 15(51): 59544-59551, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38090804

RESUMEN

Covalent organic frameworks (COFs) with crown ether units have drawn great attention due to their potential applications in adsorption, catalysis, and sensing. However, employing crown ethers to construct COFs is still challenging in light of the flexible nature of macrocycles. Here, a highly crystalline one-dimensional covalent organic framework (1D-18C6-COF) with crown ether units on the ribbon edge was synthesized. The water-mediated hydrogen bond network and π-π stacking hold the 1D COF ribbons together. The combination of experimental and DFT studies demonstrated that the hydrogen bond network plays a crucial role in the structure crystallinity. The 1D-18C6-COF was applied as an adsorbent for strontium, and it exhibited rapid kinetics with good selectivity. In the competitive adsorption experiment, a separation factor of 1900 was achieved, representing one of the largest values for cesium/strontium separation. This work provides new insights into the design and functional exploration of crystalline COFs with flexible units.

13.
Molecules ; 28(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37836665

RESUMEN

The relationship between structure and reactivity plays a dominant role in water dissociation on the various TiO2 crystallines. To observe the adsorption and dissociation behavior of H2O, the reaction force field (ReaxFF) is used to investigate the dynamic behavior of H2O on rutile (110) and anatase (101) surfaces in an aqueous environment. Simulation results show that there is a direct proton transfer between the adsorbed H2O (H2Oad) and the bridging oxygen (Obr) on the rutile (110) surface. Compared with that on the rutile (110) surface, an indirect proton transfer occurs on the anatase (101) surface along the H-bond network from the second layer of water. This different mechanism of water dissociation is determined by the distance between the 5-fold coordinated Ti (Ti5c) and Obr of the rutile and anatase TiO2 surfaces, resulting in the direct or indirect proton transfer. Additionally, the hydrogen bond (H-bond) network plays a crucial role in the adsorption and dissociation of H2O on the TiO2 surface. To describe interfacial water structures between TiO2 and bulk water, the double-layer model is proposed. The first layer is the dissociated H2O on the rutile (110) and anatase (101) surfaces. The second layer forms an ordered water structure adsorbed to the surface Obr or terminal OH group through strong hydrogen bonding (H-bonding). Affected by the H-bond network, the H2O dissociation on the rutile (110) surface is inhibited but that on the anatase (101) surface is promoted.

14.
Biomolecules ; 13(8)2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37627303

RESUMEN

Phosphatidylserine lipids are anionic molecules present in eukaryotic plasma membranes, where they have essential physiological roles. The altered distribution of phosphatidylserine in cells such as apoptotic cancer cells, which, unlike healthy cells, expose phosphatidylserine, is of direct interest for the development of biomarkers. We present here applications of a recently implemented Depth-First-Search graph algorithm to dissect the dynamics of transient water-mediated lipid clusters at the interface of a model bilayer composed of 1-palmytoyl-2-oleoyl-sn-glycero-2-phosphatidylserine (POPS) and cholesterol. Relative to a reference POPS bilayer without cholesterol, in the POPS:cholesterol bilayer there is a somewhat less frequent sampling of relatively complex and extended water-mediated hydrogen-bond networks of POPS headgroups. The analysis protocol used here is more generally applicable to other lipid:cholesterol bilayers.


Asunto(s)
Colesterol , Fosfatidilserinas , Membranas , Agua , Hidrógeno
15.
Angew Chem Int Ed Engl ; 62(38): e202309601, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37548132

RESUMEN

High-voltage aqueous rechargeable energy storage devices with safety and high specific energy are hopeful candidates for the future energy storage system. However, the electrochemical stability window of aqueous electrolytes is a great challenge. Herein, inspired by density functional theory (DFT), polyethylene glycol (PEG) can interact strongly with water molecules, effectively reconstructing the hydrogen bond network. In addition, N, N-dimethylformamide (DMF) can coordinate with Zn2+ , assisting in the rapid desolvation of Zn2+ and stable plating/stripping process. Remarkably, by introducing PEG400 and DMF as co-solvents into the electrolyte, a wide electrochemical window of 4.27 V can be achieved. The shift in spectra indicate the transformation in the number and strength of hydrogen bonds, verifying the reconstruction of hydrogen bond network, which can largely inhibit the activity of water molecule, according well with the molecular dynamics simulations (MD) and online electrochemical mass spectroscopy (OEMS). Based on this electrolyte, symmetric Zn cells survived up to 5000 h at 1 mA cm-2 , and high voltage aqueous zinc ion supercapacitors assembled with Zn anode and activated carbon cathode achieved 800 cycles at 0.1 A g-1 . This work provides a feasible approach for constructing high-voltage alkali metal ion supercapacitors through reconstruction strategy of hydrogen bond network.

16.
ACS Appl Mater Interfaces ; 15(35): 41793-41805, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37616220

RESUMEN

Colorless polyimides (CPIs) are a key substrate material for flexible organic light-emitting diode (OLED) displays and have attracted worldwide attention. Here, in this paper, the dispersion and interfacial interaction of aromatic polyamide (PA) in CPI (synthesized from 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) and 2,2'-bis(trifluoromethyl)benzidine (TFMB)) were significantly improved by in situ polymerization, and colorless transparent macromolecular polyimide composites (CPI-PAx) were successfully prepared by PA and CPI. By adjusting the ratio of PA to CPI, a high-performance engineering plastic with excellent film-forming properties was obtained. Molecular simulations confirmed the uniform distribution of PA in CPI and its interaction in polymers. In CPI-PAx, the CPI was locked by the PA chain, and numerous molecular chains were mutually entangled to form a hydrogen-bond network structure. Due to the strong interaction between the chains imparted by the hydrogen bonds of the PA, they do not slide under external forces and heating. In addition, the additive PA has excellent dimensional stability, thermal, and mechanical properties, and CPI has outstanding optical properties, so the synthesized CPI-PAx combines the comprehensive properties of PA and CPI. The CPI-PAx has excellent thermal and mechanical properties, with a thermal decomposition temperature of 499 °C, a glass transition temperature of 385 °C, a coefficient of thermal expansion of 0.8 ppm K-1, a tensile strength of 50.9 MPa, and an elastic modulus of 3.9 GPa. Particularly, CPI-PAx has a 90% transmittance in the visible region. These data prove that the strategy of combining PA and CPI by in situ polymerization is an effective method to circumvent the bottleneck of CPI in the current flexible window application, and this design strategy is universal.

17.
Bioorg Chem ; 140: 106788, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37598433

RESUMEN

Vibegron is a novel, potent, highly selective ß3-adrenergic receptor agonist for the treatment of overactive bladder with higher therapeutic capacity and lower side effects. Methyl(2S,3R)-2-((tert-butoxycarbonyl)amino)-3-hydroxy-3-phenylpropanoate ((2S,3R)-aminohydroxy ester) is a key chiral intermediate for the synthesis of Vibegron. A novel carbonyl reductase from Exiguobacterium sp. s126 (EaSDR6) was isolated using data mining technology from GenBank database with preferable catalytic activity. Hydrogen bond network regulation was performed using site-directed saturation mutagenesis and combination mutagenesis. The mutant EaSDR6A138L/S193A was obtained with the activity improvement by 4.58 folds compared with the wild type EaSDR6. The Km of EaSDR6A138L/S193A was decreased from 1.57 mM to 0.67 mM, kcat was increased by 2.17 folds, and the overall catalytic efficiency kcat/Km was increased by 5.07 folds. The organic-aqueous biphasic bioreaction system for the asymmetric synthesis of (2S,3R)-aminohydroxy ester was constructed for the first time. Under the substrate concentration of 150 g/L, the yield of (2S,3R)-aminohydroxy ester was > 99.99%, the e.e. was > 99.99%, and the spatiotemporal yield was 1.55 g/(L·h·g DCW) after 12 h reaction. While the substrate concentration was increased to 200 g/L and the reaction lasted for 36 h, the yield of (2S,3R)-aminohydroxy ester was > 99.99%, the e.e. was > 99.99% and the spatiotemporal yield was 1.05 g/(L·h·g DCW). The substrate concentration and spatiotemporal yield were higher than ever reported.


Asunto(s)
Oxidorreductasas de Alcohol , Pirimidinonas , Enlace de Hidrógeno , Oxidorreductasas de Alcohol/genética , Ésteres
18.
Angew Chem Int Ed Engl ; 62(40): e202310577, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37578644

RESUMEN

Aqueous rechargeable zinc-ion batteries (ARZBs) are impeded by the mutual problems of unstable cathode, electrolyte parasitic reactions, and dendritic growth of zinc (Zn) anode. Herein, a triple-functional strategy by introducing the tetramethylene sulfone (TMS) to form a hydrated eutectic electrolyte is reported to ameliorate these issues. The activity of H2 O is inhibited by reconstructing hydrogen bonds due to the strong interaction between TMS and H2 O. Meanwhile, the preferentially adsorbed TMS on the Zn surface increases the thickness of double electric layer (EDL) structure, which provides a shielding buffer layer to suppress dendrite growth. Interestingly, TMS modulates the primary solvation shell of Zn2+ ultimately to achieve a novel solvent co-intercalation ((Zn-TMS)2+ ) mechanism, and the intercalated TMS works as a "pillar" that provides more zincophilic sites and stabilizes the structure of cathode (NH4 V4 O10 , (NVO)). Consequently, the Zn||NVO battery exhibits a remarkably high specific capacity of 515.6 mAh g-1 at a low current density of 0.2 A g-1 for over 40 days. This multi-functional electrolytes and solvent co-intercalation mechanism will significantly propel the practical development of aqueous batteries.

19.
Adv Mater ; 35(39): e2303674, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37325993

RESUMEN

Tin-lead (Sn-Pb) perovskite solar cells (PSCs) with near-ideal bandgap still lag behind the pure lead PSCs. Disordered heterojunctions caused by inhomogeneous Sn/Pb ratio in the binary perovskite film induce large recombination loss. Here, an Sn-Pb perovskite film is reported with homogeneous component and energy distribution by introducing hydrazine sulfate (HS) in Sn perovskite precursor. HS can form hydrogen bond network and coordinate with FASnI3 thus no longer bond with Pb2+ , which reduces the crystallization rate of tin perovskite to the level of lead analog. The strong bonding between SO4 2- and Sn2+ can also suppress its oxidation. As a result, the Sn-Pb PSCs with HS exhibit a significantly improved VOC of 0.91 V along with a high efficiency of 23.17%. Meanwhile, the hydrogen bond interaction network, strong bonding between Sn2+ and sulfate ion also improve the thermal, storage, and air stability of resulting devices.

20.
Angew Chem Int Ed Engl ; 62(27): e202304413, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37160619

RESUMEN

Designing highly efficient and stable electrode-electrolyte interface for hydrogen peroxide (H2 O2 ) electrosynthesis remains challenging. Inhibiting the competitive side reaction, 4 e- oxygen reduction to H2 O, is essential for highly selective H2 O2 electrosynthesis. Instead of hindering excessive hydrogenation of H2 O2 via catalyst modification, we discover that adding a hydrogen-bond acceptor, dimethyl sulfoxide (DMSO), to the KOH electrolyte enables simultaneous improvement of the selectivity and activity of H2 O2 electrosynthesis. Spectral characterization and molecular simulation confirm that the formation of hydrogen bonds between DMSO and water molecules at the electrode-electrolyte interface can reduce the activity of water dissociation into active H* species. The suitable H* supply environment hinders excessive hydrogenation of the oxygen reduction reaction (ORR), thus improving the selectivity of 2 e- ORR and achieving over 90 % selectivity of H2 O2 . This work highlights the importance of regulating the interfacial hydrogen-bond environment by organic molecules as a means of boosting electrochemical performance in aqueous electrosynthesis and beyond.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA