Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 406: 131059, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38950832

RESUMEN

Bio-oil derived from biomass fast pyrolysis can be upgraded to gasoline and diesel alternatives by catalytic hydrodeoxygenation (HDO). Here, the novel nitrogen-doped carbon-alumina hybrid supported cobalt (Co/NCAn, n = 1, 2.5, 5) catalyst is established by a coagulation bath technique. The optimized Co/NCA2.5 catalyst presented 100 % conversion of guaiacol, high selectivity to cyclohexane (93.6 %), and extremely high deoxygenation degree (97.3 %), respectively. Therein, the formation of cyclohexanol was facilitated by stronger binding energy and greater charge transfer between Co and NC which was unraveled by density functional theory calculations. In addition, the appropriate amount of Lewis acid sites enhanced the cleavage of the C-O bond in cyclohexanol, finally resulting in a remarkable selectivity for cyclohexane. Finally, the Co/NCA2.5 catalyst also exhibited excellent selectivity (93.1 %) for high heating value hydrocarbon fuel in crude bio-oil HDO. This work provides a theoretical basis on N dopants collaborating alumina hybrid catalysts for efficient HDO reaction.


Asunto(s)
Óxido de Aluminio , Biocombustibles , Carbono , Cobalto , Nitrógeno , Cobalto/química , Catálisis , Óxido de Aluminio/química , Nitrógeno/química , Carbono/química , Ciclohexanos/química , Aceites de Plantas , Polifenoles
2.
ACS Appl Mater Interfaces ; 15(41): 48296-48303, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37812387

RESUMEN

In-situ exsolution type perovskites as solid oxide fuel cell (SOFCs) anode materials have received widespread attention because of their excellent catalytic activity. In this study, excessive NiO is introduced to the Sr2V0.4Fe0.9Mo0.7O6-δ (SVFMO) perovskite with the B-site excess design, and in-situ growth of FeNi3 alloy nanoparticles is induced in the reducing atmosphere to form the Sr2V0.4Fe0.9Mo0.7O6-δ-Ni0.4 (SVFMO-Ni0.4) composite anode. Here, with H2 or CH4 as SOFCs fuel gas, the formation of FeNi3 nanoparticles further enhances the catalytic ability. Compared with SVFMO, the maximum power density (Pmax) of Sr2V0.4Fe0.9Mo0.7O6-δ-Ni0.4 (SVFMO-Ni0.4) increases from 538 to 828 mW cm-2 at 850 °C with hydrogen as the fuel gas, and the total polarization resistance (RP) decreases from 0.23 to 0.17 Ω cm2. In addition, the long-term operational stability of the SVFMO-Ni0.4 anode shows no apparent performance degradation for more than 300 h. Compared with SVFMO, the Pmax of SVFMO-Ni0.4 increases from 138 to 464 mW cm-2 with methane as fuel gas, and the RP decreases from 1.21 to 0.29 Ω cm2.

3.
J Hazard Mater ; 459: 132242, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37562355

RESUMEN

Due to the limitations of the conventional refinery methods, development of a new method such as oxidative denitrogenation (ODN) is highly desirable. This study described a novel ODN to remove organo-nitrogenous compounds (ONCs) in liquid fuel by ascorbic acid (AscH2) and H2O2 redox system under ambient conditions. Seven ONCs including pyridine, quinoline, acridine, 7,8-benzoquinoline, indole, N-methylpyrrolidone (NMP), and N,N-dimethylformamide (DMF) were chosen to assess the fuel-denitrified ability of the AscH2/H2O2 system. The results showed that the basic group of ONCs (pyridine, quinoline, and acridine) can be effectively removed (removal ratio > 95 %) while the removal efficiency of water-soluble compounds (7,8-benzoquinoline, NMP, and DMF) was moderate (61-68 %) under a mild temperature (30 °C) and atmospheric pressure. Free radical quenching and electron paramagnetic resonance experiments confirmed that hydroxyl and AscH2 radicals played a major role in the degradation of ONCs. The degraded products of quinoline were analyzed by gas chromatography-mass spectroscopy and ion chromatography. Based on the identified intermediate products, a putative reaction pathway majorly involving three steps of N-onium formation, transfer hydrogenation, and free radical oxidative ring-opening was suggested for the quinoline degradation. The presented approach can be performed at a normal temperature and pressure and will live up to expectations in the pre-denitrogenation and selective removal of basic ONCs in fuel oils.

4.
Bioresour Technol ; 385: 129374, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37352988

RESUMEN

Fatty acid photodecarboxylase in Chlorella variabilis NC64A (CvFAP) performed excellent ability to exclusively decarboxylate renewable fatty acids for C1-shortened hydrocarbons fuel production under visible light. However, the large-scale application by such an approach is limited by the free state of CvFAP catalyst, which is unstable for efficient biofuel production. In this study, CvFAP was immobilized in magnetic nickel ferrite (NiFe2O4) nanoparticles for facile recovery by a simple procedure. The shift of Ni 2p in electron binding energy was detected to clarify the interaction between Ni2+ and histidine of CvFAP. The coordination of NiFe2O4 and CvFAP contributed to an efficient affinity binding with an immobilization capacity of 98 mg/g carrier. Hydrocarbon fuel concentration of 3.7 mM was obtained by NiFe2O4@CvFAP-induced photoenzymatic decarboxylation. The high stability of CvFAP in terms of residual enzyme activity of 79.7% at pH 9.0 and that of 68% at organic solvent ratio of 60%, respectively, were observed.


Asunto(s)
Chlorella , Nanopartículas , Ácidos Grasos/metabolismo , Chlorella/metabolismo , Fenómenos Magnéticos
5.
ACS Appl Mater Interfaces ; 15(3): 3974-3984, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36633870

RESUMEN

The use of identical electrodes for both the cathode and the anode in a symmetrical solid oxide fuel cell (SSOFC) can simplify the preparation process and increase the durability of the cell, but it is also demanding on the properties of the electrode including stability, electric conductivity, and electrocatalysis. The doping of variable-valence Mn4+/3+2+ on the B site of stable SrTiO3 is explored in this study as both the cathode and the anode for an SSOFC. Though the limit of Mn doping in SrTiO3 is generally low, the additional Pr3+/4+ donor on the Sr site of SrTi0.5Mn0.5O3 was found to enhance the structure stability, electric conductivity, and electrocatalysis. The cell with Pr0.5Sr0.5Ti0.5Mn0.5O3 electrodes excels under H2, propane, or CH4/H2 fuel, providing the cocatalyst was infiltrated on the anode side. The polarization resistance value of Pr0.5Sr0.5Ti0.5Mn0.5O3 was 0.27 Ω·cm2 as the cathode and 0.33 Ω·cm2 for the SSOFC using H2 fuel. The performance under CH4/H2 fuel can be boosted to above 0.9 W cm-2 if Ni/ceria was loaded onto the anode to enhance the methane reforming. This work contributes to a perovskite anode with high Mn doping in SrTiO3 for application in SSOFC for natural gas with renewable H2 injection.

6.
Front Bioeng Biotechnol ; 10: 851668, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242752

RESUMEN

Hydroxymethylfurfural (HMF) derivatives such as 2,5-bis(hydroxymethyl)furan (BHMF) and furandicarboxylic acid (FDCA) are promising alternative of fossil-based diols and dicarboxylic acids for synthesis of polyesters such as polyethylene terephthalate (PET). However, high cost for preparing HMF from biomass discourages the commercialization of HMF-derived polyesters. Since producing furfural (FUR) from five-carbon sugars (e.g., xylose) via dehydration is an inexpensive and commercialized process, we herein reported a method to synthesize BHMF derivatives (5-(ethoxymethyl)furan-2-methanol (EMFM), 2,5-bis(hydroxymethyl)furan monoacetate (BHMFM) and 2,5-bis(hydroxymethyl)furan diacetate (BHMFD) from furfural derivatives, i.e., (2-(ethoxymethyl)furan (EMF) and furfuryl acetate (FA)). To avoid strong acid-induced side reactions (e.g., furan ring opening, condensation and carbonization), two reaction systems, i.e., a low-concentration HCl aqueous solution combined with formaldehyde and anhydrous acetic acid combined with paraformaldehyde, were found to be suitable for such a hydroxymethylation reaction and could lead to decent product yields. In order to improve the carbon utilization, condensed furanic byproducts were further converted into hydrocarbon fuels via a reported two-step hydrodeoxygenation (HDO) process. This study not only validates the possibility of synthesizing functional HMF derivatives (EMFM, BHMFM, and BHMFD) from commercially-available FUR derivatives (EMF and FA), but also provide a new way to transform condensed furanics to value-added hydrocarbon fuels.

7.
Sci Total Environ ; 772: 144965, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-33770897

RESUMEN

The present study is the field experiment on kerosene pollution impact on southern taiga plant communities. Experimental sites were located in a mixed forest, a deciduous forest, a sedge fen and a wet meadow within the Amur Region of the Russian Far East. Kerosene loads from 1 to 500 g/kg of soil were applied to 50 × 50 cm plots in three replications and their effects on number of species and projective cover of ground vegetation were analysed in 1.5 months and 1 year after exposure. Statistical analyses of data included Student's t-test, Friedman ANOVA and correlation coefficient (r). Phylogenetic analysis was carried out for herbaceous plants on experimental plots. The highest susceptibility to kerosene pollution was found in the mixed forest, where the edificator species (Pteridium aquilinum subsp. pinetorum) was significantly suppressed by the kerosene load of only 1 g/kg of soil. Wetland communities regenerated faster than ground vegetation of forests, especially, in tests with high (>25 g/kg) kerosene loads. The wet meadow community was the most resistant to kerosene pollution, i.e., despite significant decreases in projective cover and number of species after exposure to kerosene loads of 5 and 25 g/kg in the first season, it had the highest regeneration success in the next season. In our study, the kerosene load of 25 g/kg of soil was the threshold level of pollution, above which there were significant structural changes in the studied plant communities. Depending on their abilities to resist kerosene pollution and to regenerate in the next year, dominant species of the studied plant communities were arranged in the following ascending order: Pteridium aquilinum ssp. pinetorum, Convallaria keiskei < Carex cespitosa, Calamagrostis purpurea < Lespedeza bicolor < Vaccinium uliginosum.


Asunto(s)
Queroseno , Taiga , Asia Oriental , Humanos , Filogenia , Federación de Rusia , Suelo
8.
Se Pu ; 36(8): 780-785, 2018 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-30251502

RESUMEN

Hydrocarbon fuels are mainly composed of n-alkenes, iso-alkanes, cycloalkanes (primarily single-and double-ring), alkylbenzenes, indans, tetralins, naphthalene, and alkylnaphthalenes. Different hydrocarbon classes impart different properties to a fuel. An identification method of hydrocarbon classes in kerosene-based endothermic hydrocarbon fuel was established using comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC×GC-MS). Moreover, the corresponding quantitative determination was achieved using the effective carbon number correction factors of GC×GC-FID. The effects of the main chromatographic conditions such as the column system, program heating conditions, and modulation period on the separation of fuels were discussed. Nine hydrocarbon fuels were analyzed. The results showed that the contents of paraffin and cycloalkanes are consistent with the results obtained using the standard test method ASTM D2425. The relative error is within ±10%. The carbon content calculated using this method has an error of less than 0.5% compared with the elemental analysis method. This method does not require complicated pretreatment, and the sample can be injected directly after dilution. Compared with the traditional GC-MS, the operation is simple, and the differences among various samples can be observed intuitively, which helps in improving the performance of the fuel.

9.
Metab Eng ; 49: 201-211, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30144559

RESUMEN

Liquid fuels sourced from fossil sources are the dominant energy form for mobile transport today. The consumption of fossil fuels is still increasing, resulting in a continued search for more sustainable methods to renew our supply of liquid fuel. Photosynthetic microorganisms naturally accumulate hydrocarbons that could serve as a replacement for fossil fuel, however productivities remain low. We report successful introduction of five synthetic metabolic pathways in two green cell factories, prokaryotic cyanobacteria and eukaryotic algae. Heterologous thioesterase expression enabled high-yield conversion of native fatty acyl-acyl carrier protein (ACP) into free fatty acids (FFA) in Synechocystis sp. PCC 6803 but not in Chlamydomonas reinhardtii where the polar lipid fraction instead was enhanced. Despite no increase in measurable FFA in Chlamydomonas, genetic recoding and over-production of the native fatty acid photodecarboxylase (FAP) resulted in increased accumulation of 7-heptadecene. Implementation of a carboxylic acid reductase (CAR) and aldehyde deformylating oxygenase (ADO) dependent synthetic pathway in Synechocystis resulted in the accumulation of fatty alcohols and a decrease in the native saturated alkanes. In contrast, the replacement of CAR and ADO with Pseudomonas mendocina UndB (so named as it is responsible for 1-undecene biosynthesis in Pseudomonas) or Chlorella variabilis FAP resulted in high-yield conversion of thioesterase-liberated FFAs into corresponding alkenes and alkanes, respectively. At best, the engineering resulted in an increase in hydrocarbon accumulation of 8- (from 1 to 8.5 mg/g cell dry weight) and 19-fold (from 4 to 77 mg/g cell dry weight) for Chlamydomonas and Synechocystis, respectively. In conclusion, reconstitution of the eukaryotic algae pathway in the prokaryotic cyanobacteria host generated the most effective system, highlighting opportunities for mix-and-match synthetic metabolism. These studies describe functioning synthetic metabolic pathways for hydrocarbon fuel synthesis in photosynthetic microorganisms for the first time, moving us closer to the commercial implementation of photobiocatalytic systems that directly convert CO2 into infrastructure-compatible fuels.


Asunto(s)
Biocombustibles , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii , Ácidos Grasos , Microorganismos Modificados Genéticamente , Synechocystis , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Ácidos Grasos/biosíntesis , Ácidos Grasos/genética , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo , Synechocystis/genética , Synechocystis/metabolismo
10.
Waste Manag ; 61: 276-282, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28129927

RESUMEN

In this study, a ZrO2-based polycrystalline ceramic foam catalyst was prepared and used in catalytic co-pyrolysis of waste vegetable oil and high density polyethylene (HDPE) for hydrocarbon fuel production. The effects of pyrolysis temperature, catalyst dosage, and HDPE to waste vegetable oil ratio on the product distribution and hydrocarbon fuel composition were examined. Experimental results indicate that the maximum hydrocarbon fuel yield of 63.1wt. % was obtained at 430°C, and the oxygenates were rarely detected in the hydrocarbon fuel. The hydrocarbon fuel yield increased when the catalyst was used. At the catalyst dosage of 15wt.%, the proportion of alkanes in the hydrocarbon fuel reached 97.85wt.%, which greatly simplified the fuel composition and improved the fuel quality. With the augment of HDPE to waste vegetable oil ratio, the hydrocarbon fuel yield monotonously increased. At the HDPE to waste vegetable oil ratio of 1:1, the maximum proportion (97.85wt.%) of alkanes was obtained. Moreover, the properties of hydrocarbon fuel were superior to biodiesel and 0# diesel due to higher calorific value, better low-temperature low fluidity, and lower density and viscosity.


Asunto(s)
Biocombustibles , Hidrocarburos , Aceites de Plantas , Polietileno , Administración de Residuos/métodos , Alcanos/análisis , Catálisis , Hidrocarburos/química , Aceites de Plantas/química , Polietileno/química , Temperatura , Residuos , Difracción de Rayos X , Circonio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA