Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Contam Hydrol ; 229: 103559, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31784037

RESUMEN

The concept of chaotic advection is a novel approach that has the potential to overcome some of the challenges associated with mixing of reagents that commonly occur when injection based in situ treatment techniques are used. The rotated potential mixing (RPM) flow system is one configuration which has been theorized to achieve chaotic advection in porous media, and enhance reagent mixing by periodically re-oriented dipole pumping at a series of radial wells. Prior to field implementation of chaotic advection, the selection of an RPM flow protocol will likely require a numerical model that can adequately represent groundwater flow within the zone of interest. As expected, the hydraulic conductivity (K) field is the most critical input requirement for the selected groundwater flow model. Hydraulic tomography (HT) is an innovative characterization approach that has shown potential to provide information on a K field. In this investigation, we explored whether the same well system required to invoke chaotic advection can also be applied in a HT analysis, and evaluated the use of the generated K tomogram for the selection of RPM flow parameters that can enhance reagent mixing. A series of dipole pumping tests were conducted within an area of interest as defined by the limits of the circular network of eight injection/extraction wells used to invoke chaotic advection. Hydraulic head data collected from independent dipole pumping tests were used in an inverse model to perform steady-state hydraulic tomography (SSHT) analysis to generate a K tomogram. Both the K tomogram and an effective parameter approach (i.e., a single K value assigned across the entire spatial domain as determined by single well pumping and slug tests) produced estimates of hydraulic head that closely resembled those observed due to the relative homogeneous nature of the aquifer and the small spatial scale of the area of interest. In contrast, particle tracking results showed that incorporating a heterogeneous K field significantly enhanced the spatial distribution of particle trajectories indicative of reagent mixing. These findings support the hypothesis that the same well system used to invoke chaotic advection can be combined with SSHT analysis as a viable site characterization tool for delineating the spatial variability of K. Incorporating this K tomogram in a groundwater flow model with a particle tracking engine can be used as a design tool to aid in the selection of a site-specific RPM flow protocol to achieve enhanced reagent mixing.


Asunto(s)
Agua Subterránea , Modelos Teóricos , Porosidad , Tomografía , Movimientos del Agua , Pozos de Agua
2.
Environ Monit Assess ; 191(2): 83, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30659403

RESUMEN

This study employed experimental and numerical methods to assess the behavior of conservative solute transport for a selected temporary solid waste site in a reclamation area in western Taiwan. Calibrating a site-specific numerical model, finite element model of water flow through saturated-unsaturated media (FEMWATER), relies on observations from field- and laboratory-scale hydraulic tests and spatial-temporal monitoring. The field-scale experiment used a modified hydraulic tomography survey (MHTS) to identify near surface aquifer stratifications and estimate the distribution of saturated hydraulic conductivity. The pressure plate experiments provided parameters for the van Genuchten soil characteristic model. Sensitivity analyses were then conducted based on varied recharge rates and dispersivities applied to the calibrated model. Observations of groundwater levels and salinity in the wells indicated that the regional groundwater flow was from southeast to northwest. In addition, a shallow freshwater layer was noted in the study area. The tidal-induced amplitudes for water level fluctuation in the wells ranged from 2 to 20 cm, depending on their distance from the seawater body. MHTS showed clear stratification, similar to that of well loggings at the storage site. The hydraulic conductivity at the test site ranged from 8 to 10 m/day, which is close to that obtained from the laboratory falling head test. The results of particle-tracking modeling showed that the critical recharge rate for the site needed to enhance plume traveling is 1000 mm/year. The increase in dispersivity values induced a decrease in plume travel time of up to 1000 days from the site to the coastal line. A special case for pulse releasing solute at the site shows that the key factor in controlling plume migration is the recharge rate. This is due to the low natural head gradient in the reclamation area. The results therefore suggest that a land drainage system near the site can play an important role in contaminant transport in the reclamation area.


Asunto(s)
Monitoreo del Ambiente/métodos , Restauración y Remediación Ambiental/métodos , Agua Dulce/análisis , Agua Subterránea/análisis , Agua de Mar/análisis , Movimientos del Agua , Contaminantes del Agua/análisis , Hidrología , Modelos Teóricos , Salinidad , Suelo/química , Taiwán
3.
J Contam Hydrol ; 200: 24-34, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28366611

RESUMEN

Non-aqueous phase liquids (NAPLs) have a complex mode of transport in heterogeneous aquifers, which can result in pools and lenses of NAPLs (the "source zone") that are difficult to detect and can cause long-term contamination via slow dissolution into groundwater (the "dissolved plume"). Characterizing the extent and evolution of NAPL contamination within the source zone is a useful strategy for designing and adapting appropriate remedial actions at many contaminated sites. As a NAPL flows into a given aquifer volume, the effective hydraulic conductivity (K) and specific storage (Ss) of the volume changes associated with the viscosity and compressibility of the impinging fluid, meaning that NAPL movement may be detectable with hydraulic testing. Recently, the use of oscillatory pumping tests - in which sinusoidal pumping variations are implemented and oscillatory pressure changes are detected at monitoring locations - has been suggested as a low-impact hydraulic testing strategy for characterizing aquifer properties (Cardiff et al., 2013; Zhou et al., 2016). Here, we investigate this strategy in an experimental laboratory sandbox where dyed vegetable oil is injected and allowed to migrate as a NAPL. Initial qualitative analyses demonstrate that measurable changes in pressure signal amplitude and phase provide clear evidence for NAPL plume emplacement and migration. Using the approach developed in Zhou et al. (2016), we then apply tomographic analyses to estimate the location of effective K changes (representing fluid changes) and their movement throughout time. This approach provides a method for monitoring ongoing NAPL movement without net extraction or injection of fluid, making it advantageous in field remediation applications.


Asunto(s)
Agua Subterránea , Hidrología/métodos , Contaminantes Químicos del Agua/análisis , Contaminación del Agua/análisis , Agua Subterránea/análisis , Agua Subterránea/química , Laboratorios , Tomografía/métodos , Contaminantes del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA