Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 263: 122174, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39106624

RESUMEN

In this pilot study, a combined tandem UASB+membrane reactor (R2) with high velocity settlers was proposed for the treatment of pesticide wastewater at different hydraulic retention times (HRT) and compared with a control reactor (R1). The average COD removal efficiencies of the R2 at HRTs of 96, 72, and 48 h were 83.7 %, 82.8 %, and 74.2 %, which are 14 %, 17 %, and 21 % higher than those of the R1, respectively. Throughout the operation, the biogas production of R2 was 33 %, 19 % and 28 % higher than that of R1 at the same stage, respectively, and the methane yield of R2 (0.19-0.26 L CH4/gCODremoved) was improved by 10-17 % compared to that of R1. Mean α values (VFA/ALK) of 0.13∼0.22 indicated that R2 did not undergo acidification. R2 reduced the extracellular polymers (EPS) content in the attached sludge by 56-62 % compared to R1. It also successfully delayed membrane fouling rate by 19-22 %. The results demonstrate that the R2 has a high treatment capacity, stability, and methane recovery, while also effectively reducing membrane fouling.


Asunto(s)
Reactores Biológicos , Membranas Artificiales , Metano , Plaguicidas , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Metano/metabolismo , Proyectos Piloto , Contaminantes Químicos del Agua , Análisis de la Demanda Biológica de Oxígeno , Biocombustibles
2.
Environ Sci Pollut Res Int ; 31(21): 31577-31589, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38635092

RESUMEN

Sulfate wastewater has a wide range of sources and greatly harms water, soil, and plants. Iron-carbon microelectrolysis (IC-ME) is a potentially sustainable strategy to improve the treatment of sulfate (SO42-) wastewater by sulfate-reducing bacteria (SRB). In this study, an iron-carbon mixed micro-electrolysis bioreactor (R1), iron-carbon layered bioreactor (R2), activated carbon bioreactor (R3), and scrap iron filing bioreactor (R4) were constructed by up-flow column experimental device. The performance and mechanism of removing high-concentration sulfate wastewater under different sulfate concentrations, hydraulic retention times (HRT), and chemical oxygen demand (COD)/SO42- were discussed. The results show that the iron-carbon microelectrolysis-enhanced SRB technology can remove high-concentration sulfate wastewater, and the system can still operate normally at low pH. In the high hydraulic loading stage (HRT = 12 h, COD/SO42- = 1.4), the SO42- removal rate of the R1 reactor reached 98.08%, and the ORP value was stable between - 350 and - 450 mV, providing a good ORP environment for SRB. When HRT = 12 h and influent COD/SO42- = 1.4, the R1 reactor sulfate removal rate reached 96.7%. When the influent COD/SO42- = 0.7, the sulfate removal rate was 52.9%, higher than the control group. Biological community analysis showed that the abundance of SRB in the R1 reactor was higher than that in the other three groups, indicating that the IC-ME bioreactor could promote the enrichment of SRB and improve its population competitive advantage. It can be seen that the synergistic effect between IC-ME and biology plays a vital role in the treatment of high-concentration sulfate wastewater and improves the biodegradability of sulfate. It is a promising process for treating high-concentration sulfate wastewater.


Asunto(s)
Reactores Biológicos , Carbono , Hierro , Sulfatos , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Bacterias/metabolismo , Análisis de la Demanda Biológica de Oxígeno
3.
Environ Res ; 236(Pt 2): 116848, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37558114

RESUMEN

With pyrite (FeS2) and polycaprolactone (PCL) as electron donors, three denitrification systems, namely FeS2-based autotrophic denitrification (PAD) system, PCL-supported heterotrophic denitrification (PHD) system and split-mixotrophic denitrification (PPMD) system, were constructed and operated under varying hydraulic retention times (HRT, 1-48 h). Compared with PAD or PHD, the PPMD system could achieve higher removals of NO3--N and PO43--P, and the effluent SO42- concentration was greatly reduced to 7.28 mg/L. Similarly, the abundance of the dominant genera involved in the PAD (Thiobacillus, Sulfurimonas, and Ferritrophicum, etc.) or PHD (Syntrophomonas, Desulfomicrobium, and Desulfovibrio, etc.) process all increased in the PPMD system. Gene prediction completed by PICRUSt2 showed that the abundance of the functional genes involved in denitrification and sulfur oxidation all increased with the increase of HRT. This also accounted for the increased contribution of autotrophic denitrification to total nitrogen removal in the PPMD system. In addition, the analysis of metabolic pathways disclosed the specific conversion mechanisms of nitrogen and sulfur inside the reactor.


Asunto(s)
Desnitrificación , Nitratos , Procesos Autotróficos , Nitrógeno , Azufre , Reactores Biológicos
4.
Environ Sci Pollut Res Int ; 30(10): 24987-25012, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35781666

RESUMEN

The depletion of fossil fuels coupled with stringent environmental laws has encouraged us to develop sustainable renewable energy. Due to its numerous benefits, anaerobic digestion (AD) has emerged as an environment-friendly technology. Biogas generated during AD is primarily a mixture of CH4 (65-70%) and CO2 (20-25%) and a potent energy source that can combat the energy crisis in today's world. Here, an attempt has been made to provide a broad understanding of AD and delineate the effect of various operational parameters influencing AD. The characteristics of fruit and vegetable waste (FVW) and its feasibility as a potent substrate for AD have been studied. This review also covers traditional challenges in managing FVW via AD, the implementation of various bioreactor systems to manage large amounts of organic waste and their operational boundaries, microbial consortia involved in each phase of digestion, and various strategies to increase biogas production.


Asunto(s)
Frutas , Verduras , Anaerobiosis , Biocombustibles , Reactores Biológicos , Metano
5.
Environ Sci Pollut Res Int ; 30(9): 23173-23183, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36318410

RESUMEN

The study aimed to comprehensively determine P extraction efficiency and co-digestion of food waste (FW) and primary settled-nightsoil sludge (PSNS) process performance influenced by different hydraulic retention times (4, 7, 10, and 15 days) and mixture ratios of FW:PSNS in substrates (100:0, 75:25, 50:50, 25:75, and 0:100). P-transformation was evaluated to identify P fractionation in both supernatant and sludge accumulated in reactors. The results showed that anaerobic co-digestion was inhibited by the accumulation of undigested feedstock due to higher %PSNS found in AD4 (25FW:75PSNS) and AD5 (100PSNS). A more stable process was found in AD2 (75FW:25PSNS) under hydraulic retention time (HRT) 15 days in which COD removal efficiency and P release were 97.2 and 80.2%, respectively. This recommended condition allowed a high organic loading rate (OLR) at 12 gVS/L/day resulting in the highest biogas yield of 0.93 L/L/day. Distribution of P data demonstrated that most of P in feedstock was deposited and accumulated in sediment up to 97.8%. Poor biodegradability resulting from using shortened HRT led to high increased P-solid content in effluent. In addition, available P in effluents and accumulated P-solids in sediment obtained from the AcoD process has the potential to serve as sources for P recovery.


Asunto(s)
Eliminación de Residuos , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Anaerobiosis , Biocombustibles/análisis , Alimentos , Fósforo , Reactores Biológicos , Metano/química , Digestión
6.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36142508

RESUMEN

The biological reduction of slow degradation contaminants such as perchlorate (ClO4-) is considered to be a promising water treatment technology. The process is based on the ability of a specific mixed microbial culture to use perchlorate as an electron acceptor in the absence of oxygen. In this study, batch experiments were conducted to investigate the effect of nitrate on perchlorate reduction, the kinetic parameters of the Monod equation and the optimal ratio of acetate to perchlorate for the perchlorate reducing bacterial consortium. The results of this study suggest that acclimated microbial cultures can be applied to treat wastewater containing high concentrations of perchlorate. Reactor experiments were carried out with different hydraulic retention times (HRTs) to determine the optimal operating conditions. A fixed optimal HRT and the effect of nitrate on perchlorate reduction were investigated with various concentrations of the electron donor. The results showed that perchlorate reduction occurred after nitrate removal. Moreover, the presence of sulfate in wastewater had no effect on the perchlorate reduction. However, it had little effect on biomass concentration in the presence of nitrate during exposure to a mixed microbial culture, considering the nitrate as the inhibitor of perchlorate reduction by reducing the degradation rate. The batch scale experiment results illustrated that for efficient operation of perchlorate reduction, the optimal acetate to perchlorate ratio of 1.4:1.0 would be enough. Moreover, these experiments found the following results: the kinetic parameters equivalent to Y = 0.281 mg biomass/mg perchlorate, Ks = 37.619 mg/L and qmax = 0.042 mg perchlorate/mg biomass/h. In addition, anoxic-aerobic experimental reactor results verify the optimal HRT of 6 h for continuous application. Furthermore, it also illustrated that using 600 mg/L of acetate as a carbon source is responsible for 100% of nitrate reduction with less than 50% of the perchlorate reduction, whereas at 1000 mg/L acetate, approximately 100% reduction was recorded.


Asunto(s)
Nitratos , Percloratos , Acetatos/farmacología , Reactores Biológicos/microbiología , Carbono , Nitratos/metabolismo , Oxidación-Reducción , Oxígeno , Percloratos/metabolismo , Sulfatos/metabolismo , Aguas Residuales/microbiología
7.
Environ Sci Pollut Res Int ; 29(29): 44779-44793, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35138542

RESUMEN

In this study, palm oil mill effluent (POME) treated by ultrasonication at optimum conditions (sonication power: 0.88 W/mL, sonication duration: 16.2 min and total solids: 6% w/v) obtained from a previous study was anaerobically digested at different hydraulic retention times (HRTs). The reactor biomass was subjected to metagenomic study to investigate the impact on the anaerobic community dynamics. Experiments were conducted in two 5 L continuously stirred fill-and-draw reactors R1 and R2 operated at 30 ± 2 °C. Reactor R1 serving as control reactor was fed with unsonicated POME with HRT of 15 and 20 days (R1-15 and R1-20), whereas reactor R2 was fed with sonicated POME with the same HRTs (R2-15 and R2-20). The most distinct archaea community shift was observed among Methanosaeta (R1-15: 26.6%, R2-15: 34.4%) and Methanobacterium (R1-15: 7.4%, R2-15: 3.2%). The genus Methanosaeta was identified from all reactors with the highest abundance from the reactors R2. Mean daily biogas production was 6.79 L from R2-15 and 4.5 L from R1-15, with relative methane gas abundance of 85% and 73%, respectively. Knowledge of anaerobic community dynamics allows process optimization for maximum biogas production.


Asunto(s)
Biocombustibles , Reactores Biológicos , Anaerobiosis , Metano , Aceite de Palma , Aguas del Alcantarillado/microbiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-34299912

RESUMEN

In this present investigation, a packed-filter bioreactor was employed to produce hydrogen utilizing an expired soft drink as a substrate. The effects of feeding substrate concentrations ranging from 19.51, 10.19, 5.34, 3.48, to 2.51 g total sugar/L were examined, and the position of the packed filter installed in the bioreactor at dimensionless heights (h/H) of 1/4, 2/4, 3/4, and 4/4 was studied. The results revealed that with a substrate concentration of 20 g total sugar/L and a hydraulic retention time (HRT) of 1 h, a packed filter placed at the half-height position of the bioreactor (h/H 2/4) has the optimal hydrogen production rate, hydrogen yield, and average biomass concentration in the bioreactor, resulting in 55.70 ± 2.42 L/L/d, 0.90 ± 0.06 mol H2/mol hexose, and 17.86 ± 1.09 g VSS/L. When feeding substrate concentrations varied from 20, 10, to 5 g total sugar/L with the packed-filter position at h/H 2/4, Clostridium sp., Clostridium tyrobutyricum, and Bifidobacterium crudilactis were the predominant bacteria community. Finally, it was discovered that the packed-filter bioreactor can produce stable hydrogen in high-strength organic effluent.


Asunto(s)
Bifidobacterium , Reactores Biológicos , Fermentación , Hidrógeno
9.
Chemosphere ; 274: 129774, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33549881

RESUMEN

The removal of trace organic chemicals (TOrCs) from treated wastewater and impacted surface water through managed aquifer recharge (MAR) has been extensively studied under a variety of water quality and operating conditions and at various experimental scales. The primary mechanism thought to dictate removal over the long term is biodegradation by microorganisms present in the system. This review of removal percentages observed in biologically active filtration systems reported in the peer-reviewed literature may serve as the basis to identify future indicators for persistence, as well as variable and efficient removal in MAR systems. A noticeable variation in reported removal percentages (standard deviation above 30%) was observed for 24 of the 49 most commonly studied TOrCs. Such variations suggest a rather inconsistent capacity of biologically active filter systems to remove these TOrCs. Therefore, operational parameters such as the change in dissolved organic carbon (ΔDOC) during treatment, hydraulic retention time (HRT), filter material, and redox conditions were correlated to the associated TOrC removal percentages to determine whether a data-based relationship could be elucidated. Interestingly, 11 out of the 24 compounds demonstrated increased removal with increasing ΔDOC concentrations. Furthermore, 10 compounds exhibited a positive correlation with HRT. Based on the evaluated data, a minimum HRT of 0.5-1 day is recommended for removal of most compounds.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Purificación del Agua , Biodegradación Ambiental , Filtración , Compuestos Orgánicos , Contaminantes Químicos del Agua/análisis
10.
Environ Technol ; 42(6): 972-983, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31397214

RESUMEN

In this study, a pilot-scale trickling biofilter (TBF) using pebbles and gravels media was evaluated for the treatment of domestic wastewater. The TBF system was installed in an open environment at residential area of Quaid-i-Azam University, Islamabad, Pakistan, and was operated at three different recirculation flow rates (Q), i.e. 0.04, 0.072 and 0.1 m3/day and under three different HRTs, i.e. 48, 72 and 96 h. It was observed that the efficiency of pilot-scale TBF system in terms of pathogens removal was significant, i.e. at flow rates of 0.04, 0.072 and 0.1 m3/day, an average reduction of 39.8-62.5% (p = 0.007), 35.9-48.6% (p = 0.01) and 25.8-57.3% (p = 0.009) respectively were attained in CFU/mL under different HRTs. Moreover, it has been observed that due to high void spaces up to 30%, pebbles and gravels filter media in co-ordination allowing good microbial growth and increased the diversity of bacterial species. Furthermore, it also facilitate the removal of different pollutant indicators, i.e. chemical oxygen demand (COD) (74.2-80.5%), total dissolved solids (TDS) (60.3-69.5%), electric conductivity (EC) (62.8-68.6%) and phosphates (PO4) (45.3-60.3%). A significant reduction in total nitrogen (TN) (59-63.3%) was observed at flow rates of 0.04 and 0.072 m3/day (p = 0.005). The experimental data of this research study will be helpful for further modification in the TBF system using different filter media in association and selecting optimal HRTs and flow rates in future study to get maximum efficiency of TBF system while treating domestic wastewater.


Asunto(s)
Eliminación de Residuos Líquidos , Purificación del Agua , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Filtración , Humanos , Pakistán , Aguas Residuales
11.
Huan Jing Ke Xue ; 41(4): 1794-1800, 2020 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-32608687

RESUMEN

The effects of different hydraulic retention time (HRT) on short-cut nitrification granular sludge were studied in a continuous stirred-tank reactor (CSTR) by maintaining stable influent ammonia nitrogen load. Particle size distribution, extracellular polymeric substances (EPS), and functional bacterial kinetics were analyzed. The morphology of granular sludge, the performance of the CSTR, and the activity of functional microorganisms were investigated. The high throughout sequencing technology of MiSeq was employed to analyze the structure of the microbial community in sludge. The results showed that the ammonia nitrogen removal rate in the reactor was gradually increased from 80% to 95%, and the nitrite accumulation rate was always over 85% when the HRT was decreased from 4 h to 1 h. Particle size distribution of granular sludge was greatly influenced by HRT. The mass fraction of granules with a diameter smaller than 0.3 mm and larger than 1.6 mm was gradually declined, whereas the mass fraction of granules with a diameter between 0.3 mm and 0.8 mm was increased when HRT was shortened from 4 h to 1 h. The dominating proportion of granules with a diameter between 0.3 mm and 0.8 mm reached about 50% when HRT was 1 h. The impact of HRT on the activity of functional microorganisms was studied, and HRT activity was found to be closely related to the size of granular sludge. Proteobacteria were dominant in the system. AOB enrichment was represented by Nitrosomonas, which was more than 56%. Shortening HRT is beneficial for the enrichment of AOB.

12.
Huan Jing Ke Xue ; 41(6): 2771-2778, 2020 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-32608793

RESUMEN

The effect of hydraulic retention time (HRT) on denitrifying phosphorus and nitrogen removal in a modified two sludge A2/O-BAF system was studied. The influent COD, NH4+-N, and TP were 189.6, 60.4, and 5.1 mg·L-1, respectively. When HRT was 9, 8, 7, and 6 h, the average effluent COD was less than 42 mg·L-1. The average effluent NH4+-N levels were 2.4, 2.8, 3.3, and 6.5 mg·L-1, respectively. The average effluent TP values were 0.3, 0.4, 0.7, and 0.8 mg·L-1, respectively. The ratio of the denitrifying phosphorus accumulation organisms (DPAOs/PAOs) in the system of anoxic zone was reduced from 76.8% to 48.8%. When HRT was 8 h, the ratio of denitrifying phosphorus to nitrogen (ΔPO43-/ΔNO3--N) was increased by 37.5% by a mathematical statistics method. The ΔPO43-/ΔNO3--N in the anoxic zone was 1.24 (the theoretical value is 1.41). At this time, the effect of denitrifying phosphorus to nitrogen was the best. The SVI value was lower than 100 mL·g-1 throughout the experiment, and the MLVSS/MLSS gradually decreased from 0.74 to 0.63, indicating that the sludge activity was reduced.

13.
Bioresour Technol ; 297: 122438, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31786037

RESUMEN

In this study, thermophilic bacteria pretreated primary and secondary waste sludge hydrolysis and acidification liquid were used as denitrification carbon sources at different HRTs (hydraulic retention time). The NO3--N removal rate of 99.3%, 99.0%, 99.9% and 99.2% was achieved at the optimal HRT of 8, 8, 4 and 6 h, respectively. Meanwhile, the utilization of COD (Chemical oxygen demand), proteins, carbohydrates, and VFAs (Volatile fatty acids) in carbon source during denitrification was also investigated. High-throughput sequencing technology showed that the microbial community changed with the different sludge carbon sources. And the dominant genus in both reactors was Thauera, which played a key role in denitrification.


Asunto(s)
Desnitrificación , Aguas del Alcantarillado , Bacterias , Reactores Biológicos , Carbono , Nitrógeno , Eliminación de Residuos Líquidos , Aguas Residuales
14.
Huan Jing Ke Xue ; 40(9): 4121-4127, 2019 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-31854876

RESUMEN

Upflow anaerobic filter (UAF) with actual domestic wastewater were examined in this study. The Impacts of hydraulic retention time (HRT) on the performance of a UAF and a primary methanogen group were investigated at mesophilic conditions. The chemical oxygen demand (COD) removal rate was more than 75% after 28 days acclimation at 35℃ and HRT of 24 h. With a gradual decrease in the HRT, the COD removal rate first increased and then decreased. When the HRT was 5 h, the COD removal rate was the highest, with an average 81.71% and a maximum of 87.18%. When the HRT decreased to 2.5 h, the average COD removal rate decreased to 75.12%. The methane produced per unit mass of substrate consumed (CH4/CODre) and volume fraction increased with a decrease in HRT. When the HRT was 2.5 h, it reached 0.30 L·g-1, and the volume fraction of methane was maintained at about 73%. The energy generated by the system met the energy demands of the peristaltic pump. Quantitative analysis of the primary methanogen group in the system indicates that Methanosarcinales is the dominant in the system. With a decrease in HRT, the abundances of acetoclastic and hydrogenotrophic methanogens increased significantly.

15.
Sci Total Environ ; 693: 133525, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31374512

RESUMEN

This study investigated the effect of hydraulic retention time (HRT) and chemical oxygen demand (COD) concentration on membrane fouling in aerobic granular membrane bioreactor (AGMBR) in a systematic approach. Changes in HRT (7, 10, and 15 h) and COD (500, 1000 and 1500 mg/L) were applied in five operational phases, to determine the most significant parameters to control membrane fouling for enhanced AGMBR performance. Membrane permeability loss was dramatically intensified with increase in HRT from 7.5 to 15 h and COD from 500 to 1000 mg/L. The highest polysaccharide content of loosely bound EPS (0.41 mg PS/mg VSS) and soluble microbial products (SMPs) (27 mg PS/L) occurred alongside poor AGMBR performance. Variations in membrane fouling were accompanied with considerable changes in Flavobacterium, Thauera and Paracoccus populations. Analysis of variance (ANOVA) demonstrated that HRT and interaction between HRT and COD were the most significant parameters in controlling membrane fouling.


Asunto(s)
Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Membranas Artificiales , Ríos/química , Aguas del Alcantarillado/microbiología , Aguas Residuales
16.
Water Res ; 164: 114915, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31421511

RESUMEN

This paper focused on the performance of an up-flow bio-electrochemical system (UBES) for treating the ß-lactams pharmaceutical wastewater under different hydraulic retention time (HRT). UBES is added a bio-electrochemical system below the three-phase separator based on up-flow anaerobic sludge blanket (UASB). Comparisons of chemical oxygen demand (COD) removal, accumulation of volatile fatty acid (VFA) and biogas production were investigated during the 316-day operation time, which was divided into five parts with HRT of 96 h, 72 h, 48 h, 36 h and 20 h, respectively. The average COD removal efficiency of UBES could reach 45.3 ±â€¯7.5%, 72.2 ±â€¯3.5%, 86.2 ±â€¯1.4%, 75.9 ±â€¯1.8% and 64.9 ±â€¯2.0%, which were 2.4%, 6.1%, 6.4%, 10.2%, 8.7% more than those of UASB under different HRTs, respectively. Biogas production as well as methane production of UBES were significantly higher than UASB during the whole changing HRT process, the maximum methane yield of UBES was 0.31 ±â€¯0.07 L/gCODremoved. Accumulation of VFA in UBES was discovered to be lighter than UASB, the minimum average VFA in UBES was 131.9 ±â€¯18.5 mg/L, which was obtained at HRT of 48 h. These results proved that UBES can slow down the inhibition of VFA on methanogens to make sure a good performance on COD removal and biogas production than UASB. Moreover, the relationships between methane production and VFA, biogas production and COD consumption were analyzed. A cost and benefit were analyzed for evaluating the potential of UBES in practical applications compared with UASB. Finally, radial basis function neural network (RBFNN) model was developed and fitted well with the experimental data, which can be employed to predict the effluent quality of the UBES and UASB.


Asunto(s)
Preparaciones Farmacéuticas , Aguas Residuales , Anaerobiosis , Reactores Biológicos , Metano , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , beta-Lactamas
17.
Chemosphere ; 236: 124338, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31319308

RESUMEN

Developing a real ship sewage treatment system that not only satisfies the requirement of small space onboard but also meets the latest emission standards of International Maritime Organization (IMO) is still a challenging task for ship industry. To overcome these problems, in this study, a novel pilot-scale air-lift multilevel circulation membrane bioreactor (AMCMBR) was used to explore the effect of hydraulic retention time (HRT) on effluent chemical oxygen demand (COD) and total nitrogen (TN) while treating real ship sewage. Results indicated that the satisfactory removal efficiencies of COD and TN was achieved in the former stages (Re(COD) = 91.57% and 87.82%; Re(TN) = 77.17% and 81.19%). When HRT decreased to 4 h, the removal efficiencies of COD and TN was 86.93% and 70.49% respectively, which still met the strict IMO discharge standards. This mainly because the biofilm-assistant membrane filtration lead to the increase of physical removal rate. The high ratio of mixed liquor volatile suspended solids (MLVSS)/mixed liquid suspended solids (MLSS) (i.e. 0.75) indicated a high biomass content in the attached sludge and resulted into perfect pollutants removal effort. The compliance rate of COD and TN was 100% and 89%, respectively, which indicated stable operation of the pilot-scale AMCMBR throughout the whole experiment. Fluorescence in situ Hybridization (FISH) analysis revealed that the abundance of ß-Proteobacteria was a key microbial reason for TN removal. In addition, wavelet neural network (WNN) model was proved to be suitable to simulate and predict the COD and TN removal. These conclusions indicated that the pilot-scale AMCMBR technology is an effective way for real ship sewage treatment.


Asunto(s)
Contaminantes Ambientales/química , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Navíos
18.
Water Res ; 159: 135-144, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31085388

RESUMEN

Enhanced biological denitrification for nitrogen removal using sludge alkaline fermentation liquid (SAFL) as an alternative carbon source has been widely reported in previous studies, while limited studies focused on the degradation of the organics presented in SAFL. In this study, an SAFL driven anoxic denitrification sequencing batch reactor (SBR) was established, the mechanism of organics utilization was characterized and the refractory dissolved organic matters (rDOM) was identified. Denitrification could rapidly proceed with the presence of volatile fatty acids (VFAs) initially, while the denitrification rate largely decreased after the VFAs depleted. A great deal of rDOM, which was hard to be utilized by denitrifying microorganism, was found in the effluent. A prolonged hydraulic retention time (HRT) led to the further transformation of particles and colloids to smaller colloids and soluble organics. Extended HRT promoted the degradation of soluble microbial by-product (SMP), but had minor effect on the removal of humic-like, and fulvic acid-like substances. The characterization of the effluent demonstrated the building blocks, were dominated in the rDOM (43.79%-48.78%), followed by high molecular weight protein (HMW-PN) (13.37%-17.39%), HMW polysaccharide (HMW-PS) (12.84%-15.9%), low molecular weight (LMW) neutrals (11.28%-13.65%), and hydrophobic dissolved organic carbon (HO-DOC) (8.0%-12.62%). Moreover, it was found that the building blocks were relatively easy to be degraded with the extension of HRTs, followed by LMW-PS, LMW-PN, LMW neutrals, HMW-PN, and HMW-PS. However, further extended HRT >24 h could not improve the removal of building blocks, LMW-PS and LMW neutrals. This study, for the first time, provided insights into the transformation of organic matters produced by SAFL in a denitrification system and acted as a guide for the subsequent advanced treatment.


Asunto(s)
Desnitrificación , Aguas del Alcantarillado , Reactores Biológicos , Carbono , Fermentación , Nitrógeno
19.
Biodegradation ; 30(2-3): 101-112, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30725251

RESUMEN

Even though aerobic methane-oxidation coupled to denitrification (AME-D) has been extensively studied, the exact estimation of CH4 utilization during this process still requires better understanding because effective utilization of CH4 is essential in denitrification performance, CH4 emission and economy. This study presents the effect of hydraulic retention time (HRT) on CH4 utilization in an AME-D bioreactor. Stoichiometries for AME-D were newly established by using the energy balance and the thermodynamic electron equivalent model. The theoretically determined CH4 utilized/NO3- consumed (C/N) ratio from the stoichiometry was 2.0. However, the C/N ratios obtained from the experiment varied with increasing tendency as the HRT increased. Specifically, the C/N ratio increased from 1.38 to 2.85 when the HRT increased from 0.5 to 1.0 days, which placed the theoretical C/N ratio at the HRT between 0.5 and 1.0 days. The higher C/N ratio at the longer HRT was associated with a larger CH4 utilization by methanotrophs than denitrifiers. The results obtained in this study together with those obtained in previous studies clearly illustrated that a variety of conditions affect the utilization of CH4 which is essential for optimizing the AME-D process.


Asunto(s)
Desnitrificación , Metano/metabolismo , Aerobiosis , Biodegradación Ambiental , Reactores Biológicos , Oxidación-Reducción , Termodinámica
20.
Huan Jing Ke Xue ; 40(1): 369-375, 2019 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-30628295

RESUMEN

Matured nitrosation granules were inoculated to an anoxic-aerobic continuous-flow reactor at room temperature (17-19℃). The startup and stabilization of nitrosation with granules were studied. The results show that the nitrosation of the continuous-flow was successfully achieved with an average nitrite accumulation rate (NAR) above 95%. With the increase of the dissolved oxygen (DO) content from (3±0.2) to (4.5±0.2) mg·L-1 in the aerobic zone, the NAR remained above 95%. The effect of the hydraulic retention time (HRT) of the continuous-flow reactor was investigated. The short HRT (8.4 h) sped up the circulation of the sludge particles in the continuous-flow system such that the broken granular sludge could not be integrated in time, resulting in the deterioration of granular sludge settling and the loss of sludge granules. The performance of the system was restored with the increase of the HRT to 12.2 h and the continuous-flow system stabilized. The ammonia removal efficiency and NAR were 86.7% and 96.2% on day 166, respectively.


Asunto(s)
Amoníaco/aislamiento & purificación , Reactores Biológicos , Nitrosación , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Nitritos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA