Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Intervalo de año de publicación
1.
Dokl Biochem Biophys ; 514(1): 11-15, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38189888

RESUMEN

The TREX-2-ORC protein complex of D. melanogaster is necessary for the export of the bulk of synthesized poly(A)-containing mRNA molecules from the nucleus to the cytoplasm through the nuclear pores. However, the role of this complex in the export of other types of RNA remains unknown. We have shown that TREX-2-ORC participates in the nuclear export of histone mRNAs: it associates with histone mRNPs, binds to histone H3 mRNA at the 3'-terminal part of the coding region, and participates in the export of histone mRNAs from the nucleus to the cytoplasm.


Asunto(s)
Drosophila melanogaster , Histonas , Animales , Transporte Activo de Núcleo Celular , Histonas/metabolismo , Drosophila melanogaster/genética , ARN Mensajero/genética , Proteínas Nucleares/metabolismo , Núcleo Celular/metabolismo
2.
RNA Biol ; 20(1): 469-481, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37516934

RESUMEN

Histone mRNA degradation is controlled by the unique 3' stem-loop of histone mRNA and the stem-loop binding protein (SLBP). As part of this process, the 3' stem-loop is trimmed by the histone-specific 3' exonuclease (3'hExo) and uridylated by the terminal uridylyl transferase 7 (TUT7), creating partially degraded intermediates with short uridylations. The role of these uridylations in degradation is not fully understood. Our work examines changes in the stability of the ternary complex created by trimming and uridylation of the stem-loop to better understand the role of this process in the histone mRNA life cycle. In this study, we used fluorescence polarization and electrophoretic mobility shift assays to demonstrate that both SLBP and 3'hExo can bind to uridylated and partially degraded stem-loop intermediates, although with lower affinity. We further characterized this complex by performing 1-µs molecular dynamics simulations using the AMBER force field and Nanoscale Molecular Dynamics (NAMD). These simulations show that while uridylation helps maintain the overall shape of the stem-loop, the combination of uridylation and dephosphorylation of the TPNK motif in SLBP disrupts key RNA-protein interactions. They also demonstrate that uridylation allows 3'hExo to maintain contact with the stem-loop after partial degradation and plays a role in disrupting key base pairs in partially degraded histone mRNA intermediates. Together, these experiments and simulations suggest that trimming by 3'hExo, uridylation, and SLBP dephosphorylation weakens both RNA-protein interactions and the stem-loop itself. Our results further elucidate the role of uridylation and SLBP dephosphorylation in the early stages of histone mRNA degradation.


Asunto(s)
Histonas , Simulación de Dinámica Molecular , Ensayo de Cambio de Movilidad Electroforética , ARN Mensajero/genética
3.
RNA ; 28(11): 1519-1533, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36041871

RESUMEN

Metazoan histone mRNAs are the only cellular eukaryotic mRNAs that are not polyadenylated, ending instead in a conserved stem-loop. SLBP is bound to the 3' end of histone mRNAs and is required for translation of histone mRNA. The expression of histone mRNAs is tightly cell-cycle regulated. A major regulatory step is rapid degradation of histone mRNA at the end of S-phase or when DNA synthesis is inhibited in S-phase. 3'hExo, a 3' to 5' exonuclease, binds to the SLBP/SL complex and trims histone mRNA to 3 nt after the stem-loop. Together with a terminal uridyl transferase, 3'hExo maintains the length of the histone mRNA during S-phase. 3'hExo is essential for initiating histone mRNA degradation on polyribosomes, initiating degradation into the 3' side of the stem-loop. There is extensive uridylation of degradation intermediates in the 3' side of the stem when histone mRNA is degraded. Here, we knocked out TUT7 and 3'hExo and we show that both modification of histone mRNA during S-phase and degradation of histone mRNA involve the interaction of 3'hExo, and a specific TUTase, TENT3B (TUT7, ZCCHC6). Knockout of 3'hExo prevents the initiation of 3' to 5' degradation, stabilizing histone mRNA, whereas knockout of TUT7 prevents uridylation of the mRNA degradation intermediates, slowing the rate of degradation. In synchronized 3'hExo KO cells, histone mRNA degradation is delayed, but the histone mRNA is degraded prior to mitosis by a different pathway.


Asunto(s)
Histonas , Estabilidad del ARN , Animales , Humanos , Histonas/genética , Histonas/metabolismo , Menogaril , Células HeLa , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo
4.
J Biol Chem ; 297(5): 101246, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34582893

RESUMEN

Proliferating cells coordinate histone and DNA synthesis to maintain correct stoichiometry for chromatin assembly. Histone mRNA levels must be repressed when DNA replication is inhibited to prevent toxicity and genome instability due to free non-chromatinized histone proteins. In mammalian cells, replication stress triggers degradation of histone mRNAs, but it is unclear if this mechanism is conserved from other species. The aim of this study was to identify the histone mRNA decay pathway in the yeast Saccharomyces cerevisiae and determine the mechanism by which DNA replication stress represses histone mRNAs. Using reverse transcription-quantitative PCR and chromatin immunoprecipitation-quantitative PCR, we show here that histone mRNAs can be degraded by both 5' → 3' and 3' → 5' pathways; however, replication stress does not trigger decay of histone mRNA in yeast. Rather, replication stress inhibits transcription of histone genes by removing the histone gene-specific transcription factors Spt10p and Spt21p from histone promoters, leading to disassembly of the preinitiation complexes and eviction of RNA Pol II from histone genes by a mechanism facilitated by checkpoint kinase Rad53p and histone chaperone Asf1p. In contrast, replication stress does not remove SCB-binding factor transcription complex, another activator of histone genes, from the histone promoters, suggesting that Spt10p and Spt21p have unique roles in the transcriptional downregulation of histone genes during replication stress. Together, our data show that, unlike in mammalian cells, replication stress in yeast does not trigger decay of histone mRNAs but inhibits histone transcription.


Asunto(s)
Replicación del ADN , ADN de Hongos , Histona Acetiltransferasas , Histonas , Regiones Promotoras Genéticas , ARN de Hongos , ARN Mensajero , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , Transcripción Genética , ADN de Hongos/biosíntesis , ADN de Hongos/genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/biosíntesis , Histonas/genética , ARN de Hongos/biosíntesis , ARN de Hongos/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
J Biol Chem ; 296: 100578, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33766559

RESUMEN

In eukaryotes, various alternative translation initiation mechanisms have been unveiled for the translation of specific mRNAs. Some do not conform to the conventional scanning-initiation model. Translation initiation of histone H4 mRNA combines both canonical (cap-dependent) and viral initiation strategies (no-scanning, internal recruitment of initiation factors). Specific H4 mRNA structures tether the translation machinery directly onto the initiation codon and allow massive production of histone H4 during the S phase of the cell cycle. The human eukaryotic translation initiation factor 3 (eIF3), composed of 13 subunits (a-m), was shown to selectively recruit and control the expression of several cellular mRNAs. Whether eIF3 mediates H4 mRNA translation remains to be elucidated. Here, we report that eIF3 binds to a stem-loop structure (eIF3-BS) located in the coding region of H4 mRNA. Combining cross-linking and ribonucleoprotein immunoprecipitation experiments in vivo and in vitro, we also found that eIF3 binds to H1, H2A, H2B, and H3 histone mRNAs. We identified direct contacts between eIF3c, d, e, g subunits, and histone mRNAs but observed distinct interaction patterns to each histone mRNA. Our results show that eIF3 depletion in vivo reduces histone mRNA binding and modulates histone neosynthesis, suggesting that synthesis of histones is sensitive to the levels of eIF3. Thus, we provide evidence that eIF3 acts as a regulator of histone translation.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Histonas/genética , Biosíntesis de Proteínas , Humanos , ARN Mensajero/genética , Fase S/genética
6.
J Cell Sci ; 134(3)2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33408246

RESUMEN

Replication-dependent histone mRNAs are the only cellular mRNAs that are not polyadenylated, ending in a stemloop instead of a polyA tail, and are normally regulated coordinately with DNA replication. Stemloop-binding protein (SLBP) binds the 3' end of histone mRNA, and is required for processing and translation. During Drosophila oogenesis, large amounts of histone mRNAs and proteins are deposited in the developing oocyte. The maternally deposited histone mRNA is synthesized in stage 10B oocytes after the nurse cells complete endoreduplication. We report that in wild-type stage 10B oocytes, the histone locus bodies (HLBs), formed on the histone genes, produce histone mRNAs in the absence of phosphorylation of Mxc, which is normally required for histone gene expression in S-phase cells. Two mutants of SLBP, one with reduced expression and another with a 10-amino-acid deletion, fail to deposit sufficient histone mRNA in the oocyte, and do not transcribe the histone genes in stage 10B. Mutations in a putative SLBP nuclear localization sequence overlapping the deletion phenocopy the deletion. We conclude that a high concentration of SLBP in the nucleus of stage 10B oocytes is essential for histone gene transcription.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Drosophila , Histonas , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histonas/genética , Proteínas Nucleares/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN , Proteínas Supresoras de Tumor , Factores de Escisión y Poliadenilación de ARNm
7.
RNA ; 26(11): 1716-1725, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32759388

RESUMEN

PHAX (phosphorylated adaptor for RNA export) promotes nuclear export of short transcripts of RNA polymerase II such as spliceosomal U snRNA precursors, as well as intranuclear transport of small nucleolar RNAs (snoRNAs). However, it remains unknown whether PHAX has other critical functions. Here we show that PHAX is required for efficient DNA damage response (DDR) via regulation of phosphorylated histone variant H2AX (γH2AX), a key factor for DDR. Knockdown of PHAX led to a significant reduction of H2AX mRNA levels, through inhibition of both transcription of the H2AX gene and nuclear export of H2AX mRNA, one of the shortest mRNAs in the cell. As a result, PHAX-knockdown cells become more sensitive to DNA damage due to a shortage of γH2AX. These results reveal a novel function of PHAX, which secures efficient DDR and hence genome stability.


Asunto(s)
Histonas/genética , Histonas/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Línea Celular , Daño del ADN , Reparación del ADN , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Fosforilación , Rayos Ultravioleta/efectos adversos
8.
Dev Cell ; 54(3): 379-394.e6, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32579968

RESUMEN

Many membraneless organelles form through liquid-liquid phase separation, but how their size is controlled and whether size is linked to function remain poorly understood. The histone locus body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of histone mRNAs. Here, we show that Drosophila HLBs form through phase separation. During embryogenesis, the size of HLBs is controlled in a precise and dynamic manner that is dependent on the cell cycle and zygotic histone gene activation. Control of HLB growth is achieved by a mechanism integrating nascent mRNAs at the histone locus, which facilitates phase separation, and the nuclear concentration of the scaffold protein multi-sex combs (Mxc), which is controlled by the activity of cyclin-dependent kinases. Reduced Cdk2 activity results in smaller HLBs and the appearance of nascent, misprocessed histone mRNAs. Thus, our experiments identify a mechanism linking nuclear body growth and size with gene expression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/genética , Histonas/metabolismo , Activación Transcripcional/fisiología , Animales , Núcleo Celular/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Desarrollo Embrionario/fisiología , ARN Mensajero/genética
9.
J Cell Sci ; 133(7)2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32094262

RESUMEN

In eukaryotes, a large amount of histones need to be synthesized during the S phase of the cell cycle to package newly synthesized DNA into chromatin. The transcription and 3' end processing of histone pre-mRNAs are controlled by the histone locus body (HLB), which is assembled on the shared promoter for H3 and H4 Here, we identified the Drosophila Prp40 pre-mRNA processing factor (dPrp40, annotated as CG3542) as a novel HLB component. We showed that dPrp40 is essential for Drosophila development, with functionally conserved activity in vertebrates and invertebrates. We observed that dPrp40 is fundamental in endocycling cells, highlighting a role for this factor in mediating replication efficiency in vivo The depletion of dPrp40 from fly cells inhibited the transcription, but not the 3' end processing, of histone mRNA in a H3- and H4-promoter-dependent manner. Our results establish that dPrp40 is an essential protein for Drosophila development that can localize to the HLB and might participate in histone mRNA biosynthesis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histonas/genética , Histonas/metabolismo , Procesamiento Postranscripcional del ARN , Transcripción Genética
10.
J Biol Chem ; 294(19): 7558-7565, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30962286

RESUMEN

Replication-dependent histone (RDH) mRNAs have a nonpolyadenylated 3'-UTR that ends in a highly conserved stem-loop structure. Nonetheless, a subset of RDH mRNAs has a poly(A) tail under physiological conditions. The biological meaning of poly(A)-containing (+) RDH mRNAs and details of their biosynthesis remain elusive. Here, using HeLa cells and Western blotting, qRT-PCR, and biotinylated RNA pulldown assays, we show that poly(A)+ RDH mRNAs are post-transcriptionally regulated via adenylate- and uridylate-rich element-mediated mRNA decay (AMD). We observed that the rapid degradation of poly(A)+ RDH mRNA is driven by butyrate response factor 1 (BRF1; also known as ZFP36 ring finger protein-like 1) under normal conditions. Conversely, cellular stresses such as UV C irradiation promoted BRF1 degradation, increased the association of Hu antigen R (HuR; also known as ELAV-like RNA-binding protein 1) with the 3'-UTR of poly(A)+ RDH mRNAs, and eventually stabilized the poly(A)+ RDH mRNAs. Collectively, our results provide evidence that AMD surveils poly(A)+ RDH mRNAs via BRF1-mediated degradation under physiological conditions.


Asunto(s)
Elementos Ricos en Adenilato y Uridilato/fisiología , Histonas/biosíntesis , Estabilidad del ARN/fisiología , ARN Mensajero/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Células HeLa , Histonas/genética , Humanos , ARN Mensajero/genética
11.
EMBO J ; 38(9)2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30858280

RESUMEN

The RNA-binding protein ALYREF plays key roles in nuclear export and also 3'-end processing of polyadenylated mRNAs, but whether such regulation also extends to non-polyadenylated RNAs is unknown. Replication-dependent (RD)-histone mRNAs are not polyadenylated, but instead end in a stem-loop (SL) structure. Here, we demonstrate that ALYREF prevalently binds a region next to the SL on RD-histone mRNAs. SL-binding protein (SLBP) directly interacts with ALYREF and promotes its recruitment. ALYREF promotes histone pre-mRNA 3'-end processing by facilitating U7-snRNP recruitment through physical interaction with the U7-snRNP-specific component Lsm11. Furthermore, ALYREF, together with other components of the TREX complex, enhances histone mRNA export. Moreover, we show that 3'-end processing promotes ALYREF recruitment and histone mRNA export. Together, our results point to an important role of ALYREF in coordinating 3'-end processing and nuclear export of non-polyadenylated mRNAs.


Asunto(s)
Histonas/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento Postranscripcional del ARN , Transporte de ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U7/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Histonas/genética , Humanos , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Ribonucleoproteína Nuclear Pequeña U7/genética , Factores de Transcripción/genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-30397106

RESUMEN

Metazoan replication-dependent histone mRNAs are the only known cellular mRNAs that are not polyadenylated. Histone mRNAs are present in large amounts only in S-phase cells, and their levels are coordinately regulated with the rate of DNA replication. In mammals, the stemloop at the 3' end of histone mRNA is bound to stemloop binding protein, a protein required for both synthesis and degradation of histone mRNA, and an exonuclease, 3'hExo (ERI1). Histone mRNAs are rapidly degraded when DNA synthesis is inhibited in S-phase cells and at the end of S-phase. Upf1 is also required for rapid degradation of histone mRNA as is the S-phase checkpoint. We report that Smg1 is required for histone mRNA degradation when DNA replication is inhibited, suggesting it is the PI-like kinase that activates Upf1 for histone mRNA degradation. We also show that some mutant Upf1 proteins are recruited to histone mRNAs when DNA replication is inhibited and act as dominant negative factors in histone mRNA degradation. We report that the pathway of rapid histone mRNA degradation when DNA replication is inhibited in S-phase cells that are activating the S-phase checkpoint is similar to the pathway of rapid degradation of histone mRNA at the end of S-phase.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.


Asunto(s)
Replicación del ADN , Histonas/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Uridina/metabolismo , Células HeLa , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas
13.
Genes Dev ; 32(3-4): 297-308, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29483154

RESUMEN

Transcription elongation rate influences cotranscriptional pre-mRNA maturation, but how such kinetic coupling works is poorly understood. The formation of nonadenylated histone mRNA 3' ends requires recognition of an RNA structure by stem-loop-binding protein (SLBP). We report that slow transcription by mutant RNA polymerase II (Pol II) caused accumulation of polyadenylated histone mRNAs that extend past the stem-loop processing site. UV irradiation, which decelerates Pol II elongation, also induced long poly(A)+ histone transcripts. Inhibition of 3' processing by slow Pol II correlates with failure to recruit SLBP to histone genes. Chemical probing of nascent RNA structure showed that the stem-loop fails to fold in transcripts made by slow Pol II, thereby explaining the absence of SLBP and failure to process 3' ends. These results show that regulation of transcription speed can modulate pre-mRNA processing by changing nascent RNA structure and suggest a mechanism by which alternative processing could be controlled.


Asunto(s)
Histonas/genética , Procesamiento de Término de ARN 3' , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Elongación de la Transcripción Genética , Células HEK293 , Histonas/metabolismo , Humanos , Cinética , Proteínas Nucleares/metabolismo , Pliegue del ARN , Precursores del ARN/química , ARN Mensajero/química , Transcripción Genética/efectos de la radiación , Rayos Ultravioleta , Factores de Escisión y Poliadenilación de ARNm/metabolismo
14.
FEBS Lett ; 591(14): 2106-2120, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28626879

RESUMEN

The conserved 3'-5' RNA exonuclease ERI1 is implicated in RNA interference inhibition, 5.8S rRNA maturation and histone mRNA maturation and turnover. The single ERI1 homologue in Drosophila melanogaster Snipper (Snp) is a 3'-5' exonuclease, but its in vivo function remains elusive. Here, we report Snp requirement for normal Drosophila development, since its perturbation leads to larval arrest and tissue-specific downregulation results in abnormal tissue development. Additionally, Snp directly interacts with histone mRNA, and its depletion results in drastic reduction in histone transcript levels. We propose that Snp protects the 3'-ends of histone mRNAs and upon its absence, histone transcripts are readily degraded. This in turn may lead to cell cycle delay or arrest, causing growth arrest and developmental perturbations.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/crecimiento & desarrollo , Exonucleasas/metabolismo , Histonas/genética , Homología de Secuencia de Aminoácido , Animales , Secuencia de Bases , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Exonucleasas/química , Histonas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 5.8S/genética
15.
J Mol Biol ; 429(21): 3264-3279, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-28167048

RESUMEN

In higher eukaryotes, maternally provided gene products drive the initial stages of embryogenesis until the zygotic transcriptional program takes over, a developmental process called the midblastula transition (MBT). In addition to zygotic genome activation, the MBT involves alterations in cell-cycle length and the implementation of DNA damage/replication checkpoints that serve to monitor genome integrity. Previous work has shown that mutations affecting histone mRNA metabolism or DNA replication checkpoint factors severely impact developmental progression through the MBT, prompting us to characterize and contrast the transcriptomic impact of these genetic perturbations. In this study, we define gene expression profiles that mark early embryogenesis in Drosophila through transcriptomic analyses of developmentally staged (early syncytial versus late blastoderm) and biochemically fractionated (nuclear versus cytoplasmic) wild-type (wt) embryos. We then compare the transcriptomic profiles of loss-of-function mutants of the Chk1/Grapes replication checkpoint kinase and the stem loop binding protein (SLBP), a key regulator of replication-dependent histone mRNAs. Our analysis of RNA spatial and temporal distribution during embryogenesis offers new insights into the dynamics of early embryogenesis. In addition, we find that grp and Slbp mutant embryos display profound and highly similar defects in gene expression, most strikingly in zygotic gene expression, compromising the transition from a maternal to a zygotic regulation of development.


Asunto(s)
Replicación del ADN , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Embrión no Mamífero/metabolismo , Histonas/genética , ARN Mensajero/metabolismo , Animales , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Embrión no Mamífero/citología , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Mutación , ARN Mensajero/genética , Transcriptoma , Cigoto/citología , Cigoto/metabolismo
16.
Nucleus ; 8(2): 134-143, 2017 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-28072566

RESUMEN

Histones are evolutionarily conserved proteins that together with DNA constitute eukaryotic chromatin in a defined stoichiometry. Core histones are dynamic scaffolding proteins that undergo a myriad of post-translational modifications, which selectively engage chromosome condensation, replication, transcription and DNA damage repair. Cullin4-RING ubiquitin E3 ligases are known to hold pivotal roles in a wide spectrum of chromatin biology ranging from chromatin remodeling and transcriptional repression, to sensing of cytotoxic DNA lesions. Our recent work uncovers an unexpected function of a CRL4 ligase upstream of these processes in promoting histone biogenesis. The CRL4WDR23 ligase directly controls the activity of the stem-loop binding protein (SLBP), which orchestrates elemental steps of canonical histone transcript metabolism. We demonstrate that non-proteolytic ubiquitination of SLBP ensures sufficient histone reservoirs during DNA replication and is vital for genome integrity and cellular fitness.


Asunto(s)
Histonas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Humanos , Secuencias Invertidas Repetidas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ubiquitinación
17.
Mol Cell ; 64(3): 507-519, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27773672

RESUMEN

SLBP (stem-loop binding protein) is a highly conserved factor necessary for the processing, translation, and degradation of H2AFX and canonical histone mRNAs. We identified the F-box protein cyclin F, a substrate recognition subunit of an SCF (Skp1-Cul1-F-box protein) complex, as the G2 ubiquitin ligase for SLBP. SLBP interacts with cyclin F via an atypical CY motif, and mutation of this motif prevents SLBP degradation in G2. Expression of an SLBP stable mutant results in increased loading of H2AFX mRNA onto polyribosomes, resulting in increased expression of H2A.X (encoded by H2AFX). Upon genotoxic stress in G2, high levels of H2A.X lead to persistent γH2A.X signaling, high levels of H2A.X phosphorylated on Tyr142, high levels of p53, and induction of apoptosis. We propose that cyclin F co-evolved with the appearance of stem-loops in vertebrate H2AFX mRNA to mediate SLBP degradation, thereby limiting H2A.X synthesis and cell death upon genotoxic stress.


Asunto(s)
Ciclinas/genética , Daño del ADN , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Histonas/genética , Proteínas Nucleares/genética , ARN Mensajero/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Secuencias de Aminoácidos , Animales , Apoptosis , Sitios de Unión , Línea Celular Tumoral , Ciclinas/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Ratones , Proteínas Nucleares/metabolismo , Fosforilación , Polirribosomas/genética , Polirribosomas/metabolismo , Unión Proteica , Proteolisis , ARN Mensajero/metabolismo , Ratas , Transducción de Señal , Xenopus laevis , Pez Cebra , Factores de Escisión y Poliadenilación de ARNm/metabolismo
18.
RNA ; 22(11): 1673-1688, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27609902

RESUMEN

The replication-dependent histone mRNAs end in a stem-loop instead of the poly(A) tail present at the 3' end of all other cellular mRNAs. Following processing, the 3' end of histone mRNAs is trimmed to 3 nucleotides (nt) after the stem-loop, and this length is maintained by addition of nontemplated uridines if the mRNA is further trimmed by 3'hExo. These mRNAs are tightly cell-cycle regulated, and a critical regulatory step is rapid degradation of the histone mRNAs when DNA replication is inhibited. An initial step in histone mRNA degradation is digestion 2-4 nt into the stem by 3'hExo and uridylation of this intermediate. The mRNA is then subsequently degraded by the exosome, with stalled intermediates being uridylated. The enzyme(s) responsible for oligouridylation of histone mRNAs have not been definitively identified. Using high-throughput sequencing of histone mRNAs and degradation intermediates, we find that knockdown of TUT7 reduces both the uridylation at the 3' end as well as uridylation of the major degradation intermediate in the stem. In contrast, knockdown of TUT4 did not alter the uridylation pattern at the 3' end and had a small effect on uridylation in the stem-loop during histone mRNA degradation. Knockdown of 3'hExo also altered the uridylation of histone mRNAs, suggesting that TUT7 and 3'hExo function together in trimming and uridylating histone mRNAs.


Asunto(s)
Histonas/genética , ARN Nucleotidiltransferasas/metabolismo , ARN Mensajero/metabolismo , Uridina/metabolismo , Catálisis , Replicación del ADN , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Hidrólisis , ARN Nucleotidiltransferasas/química , ARN Nucleotidiltransferasas/genética
19.
Cell Cycle ; 15(15): 1986-96, 2016 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-27254819

RESUMEN

In eukaryotes, bulk histone expression occurs in the S phase of the cell cycle. This highly conserved system is crucial for genomic stability and proper gene expression. In metazoans, Stem-loop binding protein (SLBP), which binds to 3' ends of canonical histone mRNAs, is a key factor in histone biosynthesis. SLBP is mainly expressed in S phase and this is a major mechanism to limit bulk histone production to the S phase. At the end of S phase, SLBP is rapidly degraded by proteasome, depending on two phosphorylations on Thr 60 and Thr 61. Previously, we showed that SLBP fragment (aa 51-108) fused to GST, is sufficient to mimic the late S phase (S/G2) degradation of SLBP. Here, using this fusion protein as bait, we performed pull-down experiments and found that DCAF11, which is a substrate receptor of CRL4 complexes, binds to the phosphorylated SLBP fragment. We further confirmed the interaction of full-length SLBP with DCAF11 and Cul4A by co-immunoprecipitation experiments. We also showed that DCAF11 cannot bind to the Thr61/Ala mutant SLBP, which is not degraded at the end of S phase. Using ectopic expression and siRNA experiments, we demonstrated that SLBP expression is inversely correlated with DCAF11 levels, consistent with the model that DCAF11 mediates SLBP degradation. Finally, we found that ectopic expression of the S/G2 stable mutant SLBP (Thr61/Ala) is significantly more toxic to the cells, in comparison to wild type SLBP. Overall, we concluded that CRL4-DCAF11 mediates the degradation of SLBP at the end of S phase and this degradation is essential for the viability of cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Nucleares/metabolismo , Proteolisis , Fase S , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Secuencia de Aminoácidos , Muerte Celular , Proteínas Cullin/metabolismo , Fase G2 , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Proteínas Mutantes/metabolismo , Proteínas Nucleares/química , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Interferencia de ARN , Factores de Escisión y Poliadenilación de ARNm/química
20.
Methods Mol Biol ; 1428: 31-43, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27236790

RESUMEN

The 7-methylguanosine triphosphate cap present at the 5' ends of eukaryotic mRNAs plays numerous roles in mRNA expression and metabolism. The identification and studies on cap-binding partners can be significantly advanced using tailored chemical tools such as synthetic cap analogues or RNAs carrying modified cap structures. Here we provide protocols for the production of mRNAs specifically labeled within the 5' cap with a nucleoside capable of being photo-activated, either 6-thioguanosine or 7-methyl-6-thioguanosine, which can be used in photo-cross-linking experiments to identify or characterize cap-binding biomolecules. We also describe a protocol for the cross-linking experiments with capped RNAs to map histone H4 cap-binding pocket.


Asunto(s)
Guanosina/análogos & derivados , Análogos de Caperuza de ARN/metabolismo , ARN Mensajero/química , Tionucleósidos/metabolismo , Animales , Reactivos de Enlaces Cruzados , Guanosina/metabolismo , Histonas/metabolismo , Humanos , Estructura Molecular , Biosíntesis de Proteínas , Análogos de Caperuza de ARN/química , ARN Mensajero/metabolismo , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA