Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 16(1): 101, 2017 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-28599651

RESUMEN

BACKGROUND: Oleaginous fungi can accumulate lipids by utilizing a wide range of waste substrates. They are an important source for the industrial production of omega-6 polyunsaturated fatty acids (gamma-linolenic and arachidonic acid) and have been suggested as an alternative route for biodiesel production. Initial research steps for various applications include the screening of fungi in order to find efficient fungal producers with desired fatty acid composition. Traditional cultivation methods (shake flask) and lipid analysis (extraction-gas chromatography) are not applicable for large-scale screening due to their low throughput and time-consuming analysis. Here we present a microcultivation system combined with high-throughput Fourier transform infrared (FTIR) spectroscopy for efficient screening of oleaginous fungi. RESULTS: The microcultivation system enables highly reproducible fungal fermentations throughout 12 days of cultivation. Reproducibility was validated by FTIR and HPLC data. Analysis of FTIR spectral ester carbonyl peaks of fungal biomass offered a reliable high-throughput at-line method to monitor lipid accumulation. Partial least square regression between gas chromatography fatty acid data and corresponding FTIR spectral data was used to set up calibration models for the prediction of saturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, unsaturation index, total lipid content and main individual fatty acids. High coefficients of determination (R2 = 0.86-0.96) and satisfactory residual predictive deviation of cross-validation (RPDCV = 2.6-5.1) values demonstrated the goodness of these models. CONCLUSIONS: We have demonstrated in this study, that the presented microcultivation system combined with rapid, high-throughput FTIR spectroscopy is a suitable screening platform for oleaginous fungi. Sample preparation for FTIR measurements can be automated to further increase throughput of the system.


Asunto(s)
Lípidos/análisis , Lipogénesis , Técnicas Microbiológicas , Mucor/metabolismo , Mucorales/metabolismo , Penicillium/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Biomasa , Reactores Biológicos , Fermentación , Mucor/crecimiento & desarrollo , Mucorales/crecimiento & desarrollo , Penicillium/crecimiento & desarrollo
2.
Int J Food Microbiol ; 168-169: 32-41, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24231128

RESUMEN

Routine identification of fungi based on phenotypic and genotypic methods can be fastidious and time-consuming. In this context, there is a constant need for new approaches allowing the rapid identification of molds. Fourier-transform infrared (FTIR) spectroscopy appears as such an indicated method. The objective of this work was to evaluate the potential of FTIR spectroscopy for an early differentiation and identification of filamentous fungi. One hundred and thirty-one strains identified using DNA sequencing, were analyzed using FTIR spectroscopy of the mycelia obtained after a reduced culture time of 48 h compared to current conventional methods. Partial least square discriminant analysis was used as a chemometric method to analyze the spectral data and for identification of the fungal strains from the phylum to the species level. Calibration models were constructed using 106 strains pertaining to 14 different genera and 32 species and were used to identify 25 fungal strains in a blind manner. Identification levels of 98.97% and 98.77% achieved were correctly assigned to the genus and species levels respectively. FTIR spectroscopy with its high discriminating power and rapidity therefore shows strong promise for routine fungal identification. Upgrading of our database is ongoing to test the technique's robustness.


Asunto(s)
Hongos/química , Hongos/clasificación , Micelio/química , Técnicas de Tipificación Micológica/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Análisis Discriminante , Hongos/genética , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA