Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891318

RESUMEN

Upland cotton accounts for a high percentage (95%) of the world's cotton production. Plant height (PH) and branch number (BN) are two important agronomic traits that have an impact on improving the level of cotton mechanical harvesting and cotton yield. In this research, a recombinant inbred line (RIL) population with 250 lines developed from the variety CCRI70 was used for constructing a high-density genetic map and identification of quantitative trait locus (QTL). The results showed that the map harbored 8298 single nucleotide polymorphism (SNP) markers, spanning a total distance of 4876.70 centimorgans (cMs). A total of 69 QTLs for PH (9 stable) and 63 for BN (11 stable) were identified and only one for PH was reported in previous studies. The QTLs for PH and BN harbored 495 and 446 genes, respectively. Combining the annotation information, expression patterns and previous studies of these genes, six genes could be considered as potential candidate genes for PH and BN. The results could be helpful for cotton researchers to better understand the genetic mechanism of PH and BN development, as well as provide valuable genetic resources for cotton breeders to manipulate cotton plant architecture to meet future demands.

2.
Sci Rep ; 14(1): 9606, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670987

RESUMEN

Coix lacryma-jobi L. is one of the most economically and medicinally important corns. This study constructed a high-density genetic linkage map of C. lacryma-jobi based on a cross between the parents 'Qianyi No. 2' × 'Wenyi No. 2' and their F2 progeny through high-throughput sequencing and the construction of a specific-locus amplified fragment (SLAF) library. After pre-processing, 325.49 GB of raw data containing 1628 M reads were obtained. A total of 22,944 high-quality SLAFs were identified, among which 3952 SLAFs and 3646 polymorphic markers met the requirements for the construction of a genetic linkage map. The integrated map contained 3605 high-quality SLAFs, which were grouped into ten genetic linkage groups. The total length of the map was 1620.39 cM, with an average distance of 0.45 cM and an average of 360.5 markers per linkage group. This report presents the first high-density genetic map of C. lacryma-jobi. This map was constructed using an F2 population and SLAF-seq approach, which allows the development of a large number of polymorphic markers in a short period. These results provide a platform for precise gene/quantitative trait locus (QTL) mapping, map-based gene separation, and molecular breeding in C. lacryma-jobi. They also help identify a target gene for tracking, splitting quantitative traits, and estimating the phenotypic effects of each QTL for QTL mapping. They are of great significance for improving the efficiency of discovering and utilizing excellent gene resources of C. lacryma-jobi.


Asunto(s)
Mapeo Cromosómico , Ligamiento Genético , Mapeo Cromosómico/métodos , Marcadores Genéticos , Sitios de Carácter Cuantitativo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
3.
J Adv Res ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38065406

RESUMEN

INTRODUCTION: Upland cotton is an important allotetrapolyploid crop providing natural fibers for textile industry. Under the present high-level breeding and production conditions, further simultaneous improvement of fiber quality and yield is facing unprecedented challenges due to their complex negative correlations. OBJECTIVES: The study was to adequately identify quantitative trait loci (QTLs) and dissect how they orchestrate the formation of fiber quality and yield. METHODS: A high-density genetic map (HDGM) based on an intraspecific recombinant inbred line (RIL) population consisting of 231 individuals was used to identify QTLs and QTL clusters of fiber quality and yield traits. The weighted gene correlation network analysis (WGCNA) package in R software was utilized to identify WGCNA network and hub genes related to fiber development. Gene functions were verified via virus-induced gene silencing (VIGS) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 strategies. RESULTS: An HDGM consisting of 8045 markers was constructed spanning 4943.01 cM of cotton genome. A total of 295 QTLs were identified based on multi-environmental phenotypes. Among 139 stable QTLs, including 35 newly identified ones, seventy five were of fiber quality and 64 yield traits. A total of 33 QTL clusters harboring 74 QTLs were identified. Eleven candidate hub genes were identified via WGCNA using genes in all stable QTLs and QTL clusters. The relative expression profiles of these hub genes revealed their correlations with fiber development. VIGS and CRISPR/Cas9 edition revealed that the hub gene cellulose synthase 4 (GhCesA4, GH_D07G2262) positively regulate fiber length and fiber strength formation and negatively lint percentage. CONCLUSION: Multiple analyses demonstrate that the hub genes harbored in the QTLs orchestrate the fiber development. The hub gene GhCesA4 has opposite pleiotropic effects in regulating trait formation of fiber quality and yield. The results facilitate understanding the genetic basis of negative correlation between cotton fiber quality and yield.

4.
Plants (Basel) ; 12(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37631123

RESUMEN

Grain shape is an important agronomic trait directly associated with yield in rice. In order to explore new genes related to rice grain shape, a high-density genetic map containing 2193 Bin markers (526957 SNP) was constructed by whole-genome resequencing of 208 recombinant inbred (RILs) derived from a cross between ZP37 and R8605, with a total genetic distance of 1542.27 cM. The average genetic distance between markers was 0.76 cM, and the physical distance was 201.29 kb. Quantitative trait locus (QTL) mapping was performed for six agronomic traits related to rice grain length, grain width, length-to-width ratio, thousand-grain weight, grain cross-sectional area, and grain perimeter under three different environments. A total of 39 QTLs were identified, with mapping intervals ranging from 8.1 kb to 1781.6 kb and an average physical distance of 517.5 kb. Among them, 15 QTLs were repeatedly detected in multiple environments. Analysis of the genetic effects of the identified QTLs revealed 14 stable genetic loci, including three loci that overlapped with previously reported gene positions, and the remaining 11 loci were newly identified loci associated with two or more environments or traits. Locus 1, Locus 3, Locus 10, and Locus 14 were novel loci exhibiting pleiotropic effects on at least three traits and were detected in multiple environments. Locus 14, with a contribution rate greater than 10%, influenced grain width, length-to-width ratio, and grain cross-sectional area. Furthermore, pyramiding effects analysis of three stable genetic loci showed that increasing the number of QTL could effectively improve the phenotypic value of grain shape. Collectively, our findings provided a theoretical basis and genetic resources for the cloning, functional analysis, and molecular breeding of genes related to rice grain shape.

5.
Front Plant Sci ; 14: 1201103, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37351218

RESUMEN

Faba bean (Vicia faba L.) is a valuable legume crop and data on its seed-related traits is required for yield and quality improvements. However, basic research on faba bean is lagging compared to that of other major crops. In this study, an F2 faba bean population, including 121 plants derived from the cross WY7×TCX7, was genotyped using the Faba_bean_130 K targeted next-generation sequencing genotyping platform. The data were used to construct the first ultra-dense faba bean genetic map consisting of 12,023 single nucleotide polymorphisms markers covering 1,182.65 cM with an average distance of 0.098 cM. The map consisted of 6 linkage groups, which is consistent with the 6 faba bean chromosome pairs. A total of 65 quantitative trait loci (QTL) for seed-related traits were identified (3 for 100-seed weight, 28 for seed shape, 12 for seed coat color, and 22 for nutritional quality). Furthermore, 333 candidate genes that are likely to participate in the regulation of seed-related traits were also identified. Our research findings can provide a basis for future faba bean marker-assisted breeding and be helpful to further modify and improve the reference genome.

6.
Plant Dis ; 107(10): 2997-3006, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36856646

RESUMEN

Fusarium oxysporum f. sp. radicis-vanillae (Forv), the causal agent of root and stem rot disease, is the main pathogen affecting vanilla production. Sources of resistance have been reported in Vanilla planifolia G. Jackson ex Andrews, the main cultivated vanilla species. In this study, we developed the first high-density genetic map in this species with 1,804 genotyping-by-sequencing (GBS)-generated single nucleotide polymorphism (SNP) markers using 125 selfed progenies of the CR0040 traditional vanilla cultivar. Sixteen linkage groups (LG) were successfully constructed, with a mean of 113 SNPs and an average length of 207 cM per LG. The map had a high density with an average of 5.45 SNP every 10 cM and an average distance of 1.85 cM between adjacent markers. The first three LG were aligned against the first assembled chromosome of CR0040, and the other 13 LG were correctly associated with the other 13 assembled chromosomes. The population was challenged with the highly pathogenic Forv strain Fo072 using the root-dip inoculation method. Five traits were mapped, and 20 QTLs were associated with resistance to Fo072. Among the genes retrieved in the CR0040 physical regions associated with QTLs, genes potentially involved in biotic resistance mechanisms, coding for kinases, E3 ubiquitin ligases, pentatricopeptide repeat-containing proteins, and one leucine-rich repeat receptor underlying the qFo72_08.1 QTL have been highlighted. This study should provide useful resources for marker-assisted selection in V. planifolia.


Asunto(s)
Sitios de Carácter Cuantitativo , Vanilla , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico/métodos , Vanilla/genética , Ligamiento Genético
7.
Front Plant Sci ; 13: 968618, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35979081

RESUMEN

Seed coat color is a typical evolutionary trait. Identification of the genetic loci that control seed coat color during the domestication of wild soybean could clarify the genetic variations between cultivated and wild soybean. We used 276 F10 recombinant inbred lines (RILs) from the cross between a cultivated soybean (JY47) and a wild soybean (ZYD00321) as the materials to identify the quantitative trait loci (QTLs) for seed coat color. We constructed a high-density genetic map using re-sequencing technology. The average distance between adjacent markers was 0.31 cM on this map, comprising 9,083 bin markers. We identified two stable QTLs (qSC08 and qSC11) for seed coat color using this map, which, respectively, explained 21.933 and 26.934% of the phenotypic variation. Two candidate genes (CHS3C and CHS4A) in qSC08 were identified according to the parental re-sequencing data and gene function annotations. Five genes (LOC100786658, LOC100801691, LOC100806824, LOC100795475, and LOC100787559) were predicted in the novel QTL qSC11, which, according to gene function annotations, might control seed coat color. This result could facilitate the identification of beneficial genes from wild soybean and provide useful information to clarify the genetic variations for seed coat color in cultivated and wild soybean.

8.
Genomics ; 114(2): 110306, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35131474

RESUMEN

Melon is a popular fruit vegetable crop worldwide with diverse morphological variation. We report a high-density genetic map of melon and nine major QTLs with physical region ranging from 43.47 kb to 1.89 Mb. Importantly, two seed-related trait QTLs were repeatedly detected in two environments, and the mapping region was narrowed to 522 kb according to a regional linkage analysis. A total of 40 annotated genes were screened for nonsynonymous variations, of which EVM0009818, involved in cytokinin-activated signaling, was differentially expressed in the young fruits of parents based on RNA-seq. Selective sweep analysis identified 152 sweep signals for seed size, including the two seed-related QTLs and nine homologs that have been verified to regulate seed size in Arabidopsis or rice. This work illustrates the power of a joint analysis combining resequencing-based genetic map for QTL mapping and a combination of KASP genotyping and RNA-seq analysis to facilitate QTL fine mapping.


Asunto(s)
Cucurbitaceae , Frutas , Mapeo Cromosómico , Cucurbitaceae/genética , Frutas/anatomía & histología , Frutas/genética , Fenotipo , Sitios de Carácter Cuantitativo , Semillas/genética
9.
Front Plant Sci ; 13: 1050882, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714703

RESUMEN

Rice is a major food crop that sustains approximately half of the world population. Recent worldwide improvements in the standard of living have increased the demand for high-quality rice. Accurate identification of quantitative trait loci (QTLs) for rice grain quality traits will facilitate rice quality breeding and improvement. In the present study, we performed high-resolution QTL mapping for rice grain quality traits using a genotyping-by-sequencing approach. An F2 population derived from a cross between an elite japonica variety, Koshihikari, and an indica variety, Nona Bokra, was used to construct a high-density genetic map. A total of 3,830 single nucleotide polymorphism markers were mapped to 12 linkage groups spanning a total length of 2,456.4 cM, with an average genetic distance of 0.82 cM. Seven grain quality traits-the percentage of whole grain, percentage of head rice, percentage of area of head rice, transparency, percentage of chalky rice, percentage of chalkiness area, and degree of chalkiness-of the F2 population were investigated. In total, 15 QTLs with logarithm of the odds (LOD) scores >4 were identified, which mapped to chromosomes 6, 7, and 9. These loci include four QTLs for transparency, four for percentage of chalky rice, four for percentage of chalkiness area, and three for degree of chalkiness, accounting for 0.01%-61.64% of the total phenotypic variation. Of these QTLs, only one overlapped with previously reported QTLs, and the others were novel. By comparing the major QTL regions in the rice genome, several key candidate genes reported to play crucial roles in grain quality traits were identified. These findings will expedite the fine mapping of these QTLs and QTL pyramiding, which will facilitate the genetic improvement of rice grain quality.

10.
Front Plant Sci ; 13: 1098605, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605962

RESUMEN

The sorghum-sudangrass hybrid is a vital gramineous herbage.The F2 population was obtained to clarify genetic regularities among the traits of sorghum-sudangrass hybrids by bagging and selfing in the F1 generation using 'scattered ear sorghum' and 'red hull sudangrass.' This hybrid combines the characteristics of the strong resistance of parents, high yield, and good palatability and has clear heterosis. A thorough understanding of the genetic mechanisms of yield traits in sorghum-sudangrass hybrids is essential in improving their yield. Therefore, we conducted quantitative trait locus (QTL) mapping for plant height, stem diameter, tiller number, leaf number, leaf length, leaf width, and fresh weight of each plant in three different environments, using a high-density genetic linkage map based on single nucleotide polymorphism markers previously constructed by our team. A total of 55 QTLs were detected, uniformly distributed over the 10 linkage groups (LGs), with logarithm of odds values ranging between 2.5 and 7.1, which could explain the 4.9-52.44% phenotypic variation. Furthermore, 17 yield-related relatively high-frequency QTL (RHF-QTL) loci were repeatedly detected in at least two environments, with an explanatory phenotypic variation of 4.9-30.97%. No RHF-QTLs were associated with the tiller number. The genes within the confidence interval of RHF-QTL were annotated, and seven candidate genes related to yield traits were screened. Three QTL sites overlapping or adjacent to previous studies were detected by comparative analysis. We also found that QTL was enriched and that qLL-10-1 and qFW-10-4 were located at the same location of 25.81 cM on LG10. The results of this study provide a foundation for QTL fine mapping, candidate gene cloning, and molecular marker-assisted breeding of sorghum-sudangrass hybrids.

11.
Front Plant Sci ; 13: 1076600, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618635

RESUMEN

The tolerance of rice anaerobic germination (AG) is the main limiting factor for direct seeding application, yet the genetics mechanism is still in its infancy. In the study, recombinant inbred lines population of TD70 Japonica cultivar and Kasalath Indica cultivar, was employed to construct a high-density genetic map by whole genome re-sequencing. As a result, a genetic map containing 12,328 bin-markers was constructed and a total of 50 QTLs were then detected for CL(coleoptile length), CD (coleoptile diameter), CSA (coleoptile surface area) and CV (coleoptile volume) related traits in the two stages of anaerobic treatment using complete interval mapping method (inclusive composite interval mapping, ICIM). Among the four traits associated with coleoptile, coleoptile volume had the largest number of QTLs (17), followed by coleoptile diameter (16), and coleoptile length had 5 QTLs. These QTLs could explain phenotypic contribution rates ranging from 0.34% to 11.17% and LOD values ranging from 2.52 to 11.57. Combined with transcriptome analysis, 31 candidate genes were identified. Furthermore, 12 stable QTLs were used to detect the aggregation effect analysis. Besides, It was found that individuals with more aggregation synergistic alleles had higher phenotypic values in different environments. Totally, high-density genetic map, QTL mapping and aggregation effect analysis of different loci related to the anaerobic germination of rice seeds were conducted to lay a foundation for the fine mapping of related genes in subsequent assisted breeding.

12.
BMC Genomics ; 22(1): 898, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911432

RESUMEN

BACKGROUND: Genetic and functional genomics studies require a high-quality genome assembly. Tomato (Solanum lycopersicum), an important horticultural crop, is an ideal model species for the study of fruit development. RESULTS: Here, we assembled an updated reference genome of S. lycopersicum cv. Heinz 1706 that was 799.09 Mb in length, containing 34,384 predicted protein-coding genes and 65.66% repetitive sequences. By comparing the genomes of S. lycopersicum and S. pimpinellifolium LA2093, we found a large number of genomic fragments probably associated with human selection, which may have had crucial roles in the domestication of tomato. We also used a recombinant inbred line (RIL) population to generate a high-density genetic map with high resolution and accuracy. Using these resources, we identified a number of candidate genes that were likely to be related to important agronomic traits in tomato. CONCLUSION: Our results offer opportunities for understanding the evolution of the tomato genome and will facilitate the study of genetic mechanisms in tomato biology.


Asunto(s)
Solanum lycopersicum , Solanum , Mapeo Cromosómico , Domesticación , Genómica , Humanos , Solanum lycopersicum/genética , Solanum/genética
13.
Curr Issues Mol Biol ; 43(3): 1977-1996, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34889905

RESUMEN

Due to its fast deterioration, soybean (Glycine max L.) has an inherently poor seed vigor. Vigor loss occurring during storage is one of the main obstacles to soybean production in the tropics. To analyze the genetic background of seed vigor, soybean seeds of a recombinant inbred line (RIL) population derived from the cross between Zhonghuang24 (ZH24, low vigor cultivar) and Huaxia3hao (HX3, vigorous cultivar) were utilized to identify the quantitative trait loci (QTLs) underlying the seed vigor under -20 °C conservation and accelerated aging conditions. According to the linkage analysis, multiple seed vigor-related QTLs were identified under both -20 °C and accelerated aging storage. Two major QTLs and eight QTL hotspots localized on chromosomes 3, 6, 9, 11, 15, 16, 17, and 19 were detected that were associated with seed vigor across two storage conditions. The indicators of seed vigor did not correlate well between the two aging treatments, and no common QTLs were detected in RIL populations stored in two conditions. These results indicated that deterioration under accelerated aging conditions was not reflective of natural aging at -20 °C. Additionally, we suggest 15 promising candidate genes that could possibly determine the seed vigor in soybeans, which would help explore the mechanisms responsible for maintaining high seed vigor.


Asunto(s)
Mapeo Cromosómico , Criopreservación , Glycine max/genética , Vigor Híbrido/genética , Senescencia de la Planta/genética , Sitios de Carácter Cuantitativo , Semillas , Bases de Datos Genéticas , Estudios de Asociación Genética , Ligamiento Genético , Genómica , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Selección Genética
14.
Front Plant Sci ; 12: 696229, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335662

RESUMEN

Strawberry is an allo-octoploid crop with high genome heterozygosity and complexity, which hinders the sequencing and the assembly of the genome. However, in the present study, we have generated a chromosome level assembly of octoploid strawberry sourced from a highly homozygous inbred line 'Wongyo 3115', using long- and short-read sequencing technologies. The assembly of 'Wongyo 3115' produced 805.6 Mb of the genome with 323 contigs scaffolded into 208 scaffolds with an N50 of 27.3 Mb after further gap filling. The whole genome annotation resulted in 151,892 genes with a gene density of 188.52 (genes/Mb) and validation of a genome, using BUSCO analysis resulted in 94.10% complete BUSCOs. Firmness is one of the vital traits in strawberry, which facilitate the postharvest shelf-life qualities. The molecular and genetic mechanisms that contribute the firmness in strawberry remain unclear. We have constructed a high-density genetic map based on the 'Wongyo 3115' reference genome to identify loci associated with firmness in the present study. For the quantitative trait locus (QTL) identification, the 'BS F2' populations developed from two inbred lines were genotyped, using an Axiom 35K strawberry chip, and marker positions were analyzed based on the 'Wongyo 3115' genome. Genetic maps were constructed with 1,049 bin markers, spanning the 3,861 cM. Using firmness data of 'BS F2' obtained from 2 consecutive years, five QTLs were identified on chromosomes 3-3, 5-1, 6-1, and 6-4. Furthermore, we predicted the candidate genes associated with firmness in strawberries by utilizing transcriptome data and QTL information. Overall, we present the chromosome-level assembly and annotation of a homozygous octoploid strawberry inbred line and a linkage map constructed to identify QTLs associated with fruit firmness.

15.
G3 (Bethesda) ; 11(7)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-33836054

RESUMEN

Plant height is a crucial element related to plant architecture that influences the seed yield of oilseed rape (Brassica napus L.). In this study, we isolated a natural B. napus mutant, namely a semi-dwarf mutant (sdw-e), which exhibits a 30% reduction in plant height compared with Zhongshuang 11-HP (ZS11-HP). Quantitative trait locus sequencing (QTL-seq) was conducted using two extreme DNA bulks in F2 populations in Wuchang-2017 derived from ZS11-HP × sdw-e to identify QTLs associated with plant height. The result suggested that two QTL intervals were located on chromosome A10. The F2 population consisting of 200 individuals in Yangluo-2018 derived from ZS11-HP × sdw-e was used to construct a high-density linkage map using whole-genome resequencing. The high-density linkage map harbored 4323 bin markers and covered a total distance of 2026.52 cM with an average marker interval of 0.47 cM. The major QTL for plant height named qPHA10 was identified on linkage group A10 by interval mapping and composite interval mapping methods. The major QTL qPHA10 was highly consistent with the QTL-seq results. And then, we integrated the variation sites and expression levels of genes in the major QTL interval to predict the candidate genes. Thus, the identified QTL and candidate genes could be used in marker-assisted selection for B. napus breeding in the future.


Asunto(s)
Brassica napus , Sitios de Carácter Cuantitativo , Brassica napus/genética , Brassica napus/crecimiento & desarrollo , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple
16.
Front Plant Sci ; 12: 644402, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868342

RESUMEN

Resveratrol (trans-3,4',5-trihydroxystilbene) is a natural stilbene phytoalexin which is also found to be good for human health. Cultivated peanut (Arachis hypogaea L.), a worldwide important legume crop, is one of the few sources of human's dietary intake of resveratrol. Although the variations of resveratrol contents among peanut varieties were observed, the variations across environments and its underlying genetic basis were poorly investigated. In this study, the resveratrol content in seeds of a recombination inbred line (RIL) population (Zhonghua 6 × Xuhua 13, 186 progenies) were quantified by high performance liquid chromatography (HPLC) method across four environments. Genotypes, environments and genotype × environment interactions significantly influenced the resveratrol contents in the RIL population. A total of 8,114 high-quality single nucleotide polymorphisms (SNPs) were identified based on double-digest restriction-site-associated DNA sequencing (ddRADseq) reads. These SNPs were clustered into bins using a reference-based method, which facilitated the construction of high-density genetic map (2,183 loci with a total length of 2,063.55 cM) and the discovery of several chromosome translocations. Through composite interval mapping (CIM), nine additive quantitative trait loci (QTL) for resveratrol contents were identified on chromosomes A01, A07, A08, B04, B05, B06, B07, and B10 with 5.07-8.19% phenotypic variations explained (PVE). Putative genes within their confidential intervals might play roles in diverse primary and secondary metabolic processes. These results laid a foundation for the further genetic dissection of resveratrol content as well as the breeding and production of high-resveratrol peanuts.

17.
Mol Biol Rep ; 48(4): 3379-3392, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33890197

RESUMEN

Gray leaf spot (GLS) caused by Cercospora zeae-maydis or Cercospora zeina is one of the devastating maize foliar diseases worldwide. Identification of GLS-resistant quantitative trait loci (QTL)/genes plays an urgent role in improving GLS resistance in maize breeding practice. Two groups of recombinant inbred line (RIL) populations derived from CML373 × Ye107 and Chang7-2 × Ye107 were generated and subjected to genotyping-by-sequencing (GBS). A total of 1,929,222,287 reads in CML373 × Ye107 (RIL-YCML) and 2,585,728,312 reads in Chang7-2 × Ye107 (RIL-YChang), with an average of 10,961,490 (RIL-YCML) and 13,609,096 (RIL-YChang) reads per individual, were got, which was roughly equal to 0.70-fold and 0.87-fold coverage of the maize B73 RefGen_V4 genome for each F7 individual, respectively. 6418 and 5139 SNP markers were extracted to construct two high-density genetic maps. Comparative analysis using these physically mapped marker loci demonstrated a satisfactory colinear relationship with the reference genome. 11 GLS-resistant QTL have been detected. The individual QTL accounted for 1.53-24.00% of the phenotypic variance explained (PVE). The new consensus QTL (qYCM-DS3-3/qYCM-LT3-1/qYCM-LT3-2) with the largest effect was located in chromosome bin 3.05, with an interval of 2.7 Mb, representing 13.08 to 24.00% of the PVE. Further gene annotation indicated that there were four candidate genes (GRMZM2G032384, GRMZM2G041415, GRMZM2G041544, and GRMZM2G035992) for qYCM-LT3-1, which may be related to GLS resistance. Combining RIL populations and GBS-based high-density genetic maps, a new larger effect QTL was delimited to a narrow genomic interval, which will provide a new resistance source for maize breeding programs.


Asunto(s)
Resistencia a la Enfermedad/genética , Genoma de Planta , Micosis , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Zea mays/genética , Cercospora , Mapeo Cromosómico , Genómica , Análisis de Secuencia de ADN , Zea mays/microbiología , Zea mays/fisiología
18.
Front Plant Sci ; 11: 566056, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362807

RESUMEN

Seed weight and shape are important agronomic traits that affect soybean quality and yield. In the present study, we used image analysis software to evaluate 100-seed weight and seed shape traits (length, width, perimeter, projection area, length/width, and weight/projection area) of 155 novel recombinant inbred soybean lines (NJRISX) generated by crossing "Su88-M21" and "XYXHD". We examined quantitative trait loci (QTLs) associated with the six traits (except seed weight per projection area), and identified 42 additive QTLs (5-8 QTLs per trait) accounting for 24.9-37.5% of the phenotypic variation (PV). Meanwhile, 2-4 epistatic QTL pairs per trait out of a total of 18 accounted for 2.5-7.2% of the PV; and unmapped minor QTLs accounted for the remaining 35.0-56.7% of the PV. A total of 28 additive and 11 epistatic QTL pairs were concentrated in nine joint QTL segments (JQSs), indicating that QTLs associated with seed weight and shape are closely related and interacted. An interaction was also detected between additive and epistatic QTL pairs and environment, which made significant contributions of 1.4-9.5% and 0.4-0.8% to the PV, respectively. We annotated 18 candidate genes in the nine JQSs, which were important for interpreting the close relationships among the six traits. These findings indicate that examining the interactions between closely related traits rather than only analyzing individual trait provides more useful insight into the genetic system of the interrelated traits for which there has been limited QTL information.

19.
BMC Plant Biol ; 20(1): 474, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33059596

RESUMEN

BACKGROUND: Goji (Lycium spp., 2n = 24) is a fruit bearing woody plant popular as a superfood for extensive medicinal and nutritional advantages. Fruit size associated attributes are important for evaluating small-fruited goji berry and plant architecture. The domestication traits are regulated quantitatively in crop plants but few studies have attempted on genomic regions corresponding to fruit traits. RESULTS: In this study, we established high-resolution map using specific locus amplified fragment (SLAF) sequencing for de novo SNPs detection based on 305 F1 individuals derived from L. chinense and L. barbarum and performed quantitative trait loci (QTL) analysis of fruit size related traits in goji berry. The genetic map contained 3495 SLAF markers on 12 LGs, spanning 1649.03 cM with 0.47 cM average interval. Female and male parents and F1 individuals` sequencing depth was 111.85-fold and 168.72-fold and 35.80-fold, respectively. The phenotype data were collected for 2 successive years (2018-2019); however, two-year mean data were combined in an extra year (1819). Total 117 QTLs were detected corresponding to multiple traits, of which 78 QTLs in 2 individual years and 36 QTLs in extra year. Six Promising QTLs (qFW10-6.1, qFL10-2.1, qLL10-2.1, qLD10-2.1, qLD12-4.1, qLA10-2.1) were discovered influencing fruit weight, fruit length and leaf related attributes covering an interval ranged from 27.32-71.59 cM on LG10 with peak LOD of 10.48 and 14.6% PVE. Three QTLs targeting fruit sweetness (qFS3-1, qFS5-2) and fruit firmness (qFF10-1) were also identified. Strikingly, various traits QTLs were overlapped on LG10, in particular, qFL10-2.1 was co-located with qLL10-2.1, qLD10-2.1 and qLA10-2.1 among stable QTLs, harbored tightly linked markers, while qLL10-1 was one major QTL with 14.21 highest LOD and 19.3% variance. As LG10 harbored important traits QTLs, we might speculate that it could be hotspot region regulating fruit size and plant architectures. CONCLUSIONS: This report highlights the extremely saturated linkage map using SLAF-seq and novel loci contributing fruit size-related attributes in goji berry. Our results will shed light on domestication traits and further strengthen molecular and genetic underpinnings of goji berry; moreover, these findings would better facilitate to assemble the reference genome, determining potential candidate genes and marker-assisted breeding.


Asunto(s)
Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Frutas/anatomía & histología , Frutas/genética , Ligamiento Genético , Lycium/anatomía & histología , Fenotipo , Mapeo Cromosómico , Genómica , Lycium/genética , Sitios de Carácter Cuantitativo
20.
BMC Genomics ; 21(1): 578, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32831010

RESUMEN

BACKGROUND: Transcription factor (TF) GAMYB, belonging to MYB family (named after the gene of the avian myeloblastosis virus) is a master gibberellin (GA)-induced regulatory protein that is crucial for development and germination of cereal grain and involved in anther formation. It activates many genes including high-molecular-weight glutenin and α-amylase gene families. This study presents the first attempt to characterize the rye gene encoding GAMYB in relation to its sequence, polymorphisms, and phenotypic effects. RESULTS: ScGAMYB was mapped on rye chromosome 3R using high-density Diversity Arrays Technology (DArT)/DArTseq-based maps developed in three mapping populations. The ScGAMYB sequences were identified in RNA-seq libraries of four rye inbred lines. The transcriptome used for the search contained almost 151,000 transcripts with a median contig length of 500 nt. The average amount of total base raw data was approximately 9 GB. Comparative analysis of the ScGAMYB sequence revealed its high level of homology to wheat and barley orthologues. Single nucleotide polymorphisms (SNPs) detected among rye inbred lines allowed the development of allele specific-PCR (AS-PCR) markers for ScGAMYB that might be used to detect this gene in wide genetic stocks of rye and triticale. Segregation of the ScGAMYB alleles showed significant relationship with α-amylase activity (AMY). CONCLUSIONS: The research showed the strong similarity of rye GAMYB sequence to its orthologues in other Graminae and confirmed the position in the genome consistent with the collinearity rule of cereal genomes. Concurrently, the ScGAMYB coding sequence (cds) showed stronger variability (24 SNPs) compared to the analogous region of wheat (5 SNPs) and barley (7 SNPs). The moderate regulatory effect of ScGAMYB on AMY was confirmed, therefore, ScGAMYB was identified as a candidate gene for partial control of α-amylase production in rye grain. The predicted structural protein change in the aa region 362-372, caused by a single SNP (C/G) at the 1100 position in ScGAMYB cds and single aa sequence change (S/C) at the 367 position, is the likely cause of the differences in the effectiveness of ScGAMYB regulatory function associated with AMY. The development of sequence-based, allele-specific (AS) PCR markers could be useful in research and application.


Asunto(s)
Cromosomas de las Plantas , Secale , Alelos , Cromosomas de las Plantas/genética , Genes de Plantas/genética , Secale/genética , alfa-Amilasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA