Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Talanta ; 274: 125913, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547839

RESUMEN

In this study, a novel three-dimensional hierarchical porous deep eutectic solvents-modified graphene aerogel (3D DES-GA) was synthesized for use as a solid-phase microextraction (SPME) fiber coating. The SPME fiber was characterized by its fluffy and hierarchical porous structure, uniform thickness, and rapid mass transfer capabilities. This fiber demonstrated a lifetime (≥160 uses) and excellent precision (with relative standard deviations of 2.4-6.6% for single fiber and 6.0-9.8% for fiber-to-fiber repeatability). The SPME fiber also exhibited remarkable extraction performance for polycyclic aromatic hydrocarbons and polychlorinated biphenyls, which are common persistent organic pollutants in environmental samples. When combined with gas chromatography-tandem mass spectrometry, the method allowed for high-efficiency extraction (enrichment factors ranging from 1225 to 4652 folds) and sensitive determination (limit of detection ranging from 0.010 to 0.056 pg g-1) of polychlorinated naphthalenes (PCNs) in complex samples. To validate this method, we applied it to the determination of four PCNs in five types of fish tissues. The results revealed the presence of 1-chloronaphthalene at concentrations of 7.0 ± 2.9-34.8 ± 2.1 pg g-1 and 1,4-dichloronaphthalene at concentrations of 6.0 ± 0.3-10.9 ± 1.4 pg g-1 in three fish species. Compared with reported sample pretreatment methods reported in the literature, this proposed headspace SPME method offers additional advantages, including simplicity of operation and reduced sample and organic solvent consumption.

2.
Anal Chim Acta ; 1009: 48-55, 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29422131

RESUMEN

On-site sampling is an analytical approach that can ensure the accuracy of monitoring data and enhance the effectiveness of environmental protection measures. In the present work, an in-syringe solid-phase extraction (SPE) device was designed for on-site sampling of trace contaminants in environmental water samples followed by gas chromatography-mass spectrometry (GC-MS) analysis. Template assisted freeze casting followed by hydrazine vapor reduction approach was used to synthesize a hierarchical porous graphene aerogel (HPGA), which was used as the sorbent in the in-syringe SPE device. Environmental degradable pyrethroids were selected as the model analytes. Owing to the large specific surface area and hydrophobicity of HPGA, the target molecules could be completely extracted during one aspirating/dispensing cycle. The analytes were stable on the sorbent for at least 72 h when the device was stored under airtight and light-free conditions, and were not affected by the pH value of sample solution. All results demonstrated that the device could meet the requirements of on-site sampling. For practical application, the limits of detection were found to be in the range of 0.012-0.11 ng mL-1 under the optimized conditions, and satisfactory recoveries in the range of 65.7-105.9% were obtained for the analysis of real samples. The results of this study demonstrate the immense potential of HPGA for the enrichment of trace environmental pollutants, and meanwhile promote the application of the in-syringe SPE technique as a promising candidate for on-site sampling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA