Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 14: 1386097, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011470

RESUMEN

3D cancer cell cultures have enabled new opportunities for replacing compound testing in experimental animals. However, most solid tumors are composed of multiple cell types, including fibroblasts. In this study we developed multicellular tumor heterospheroids composed of cancer and fibroblasts cell lines. We developed heterospheroids by combining HT-29, MCF-7, PANC-1 or SW480 with 1BR.3.G fibroblasts, which we have previously reported support spheroid formation. We also tested fibroblast cell lines, MRC-5, GM00498 and HIF, but 1BR.3.G was found to best form heterospheroids with morphological similarity to in vivo tumor tissue. The architectural organization of heterospheroids was based on histological examination using immunohistochemistry. We found that HT-29 and MCF-7 cells developed spheroids with the cancer cells surrounding the fibroblasts, whereas PANC-1 cells interspersed with the fibroblasts and SW480 cells were surrounded by fibroblasts. The fibroblasts also expressed collagen-1 and FAP-α, and whole transcriptomic analysis (WTA) showed abundant ECM- and EMT-related expression in heterospheroids, thus reflecting a representative tumor-like microenvironment. The WTA showed that PANC-1 heterospheroids possess a strong EMT profile with abundant Vimentin and CDH2 expression. Drug testing was evaluated by measuring cytotoxicity of 5FU and cisplatin using cell viability and apoptosis assays. We found no major impact on the cytotoxicity when fibroblasts were added to the spheroids. We conclude that the cancer cell lines together with fibroblasts shape the architectural organization of heterospheroids to form tumor-like morphology, and we propose that the various 3D tumor structures can be used for drug testing directed against the cancer cells as well as the fibroblasts.

2.
Cancers (Basel) ; 14(10)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35626032

RESUMEN

Classic Hodgkin lymphoma is characterized by a few tumor cells surrounded by a protective and immunosuppressive tumor microenvironment (TME) composed by a wide variety of noncancerous cells that are an active part of the disease. Therefore, new techniques to study the cHL-TME and new therapeutic strategies targeting specifically tumor cells, reactivating the antitumor immunity, counteracting the protective effects of the TME, were developed. Here, we describe new methods used to study the cell composition, the phenotype, and the spatial distribution of Hodgkin and Reed-Sternberg (HRS) cells and of noncancerous cells in tumor tissues. Moreover, we propose a classification, with increasing complexity, of the in vitro functional studies used to clarify the interactions leading not only to HRS cell survival, growth and drug resistance, but also to the immunosuppressive tumor education of monocytes, T lymphocytes and fibroblasts. This classification also includes new 3-dimensional (3D) models, obtained by cultivating HRS cells in extracellular matrix scaffolds or in sponge scaffolds, under non-adherent conditions with noncancerous cells to form heterospheroids (HS), implanted in developing chick eggs (ovo model). We report results obtained with these approaches and their applications in clinical setting.

3.
Biomed Pharmacother ; 142: 112042, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34403963

RESUMEN

Mesenchymal stem cells (MSCs) therapy has brought a great enthusiasm to the treatment of various immune disorders, tissue regeneration and transplantation therapy. MSCs are being extensively investigated for their immunomodulatory actions. MSCs can deliver immunomodulatory signals to inhibit allogeneic T cell immune responses by downregulating pro-inflammatory cytokines and increasing regulatory cytokines and growth factors. Islet transplantation is a therapeutic alternative to the insulin therapy for the treatment of type 1 diabetes mellitus (T1DM). However, the acute loss of islets due to the lack of vasculature and hypoxic milieu in the immediate post-transplantation period may lead to treatment failure. Moreover, despite the use of potent immunosuppressive drugs, graft failure persists because of immunological rejection. Many in vitro and in vivo researches have demonstrated the multipotency of MSCs as a mediator of immunomodulation and a great approach for enhancement of islet engraftment. MSCs can interact with immune cells of the innate and adaptive immune systems via direct cell-cell contact or through secretomes containing numerous soluble growth and immunomodulatory factors or mitochondrial transfer. This review highlights the interactions between MSCs and different immune cells to mediate immunomodulatory functions along with the importance of MSCs therapy for the successful islet transplantation.


Asunto(s)
Inmunomodulación/inmunología , Trasplante de Islotes Pancreáticos/inmunología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/inmunología , Animales , Exosomas/inmunología , Humanos , Linfocitos/inmunología , Esferoides Celulares/inmunología
4.
Cancers (Basel) ; 12(8)2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32726910

RESUMEN

Within the ovarian cancer tumor microenvironment, cancer stem-like cells (CSC) interact with carcinoma associated mesenchymal stem/stromal cells (CA-MSC) through multiple secreted cytokines and growth factors. These paracrine interactions have been revealed to cause enrichment of CSC and their chemoprotection; however, it is still not known if platelet-derived growth factor (PDGF) signaling is involved in facilitating these responses. In order to probe this undiscovered bidirectional communication, we created a model of ovarian malignant ascites in the three-dimensional (3D) hanging drop heterospheroid array, with CSC and CA-MSC. We hypothesized that PDGF secretion by CA-MSC increases self-renewal, migration, epithelial to mesenchymal transition (EMT) and chemoresistance in ovarian CSC. Our results indicate that PDGF signaling in the CSC-MSC heterospheroids significantly increased stemness, metastatic potential and chemoresistance of CSC. Knockdown of PDGFB in MSC resulted in abrogation of these phenotypes in the heterospheroids. Our studies also reveal a cross-talk between PDGF and Hedgehog signaling in ovarian cancer. Overall, our data suggest that when the stromal signaling via PDGF to ovarian CSC is blocked in addition to chemotherapy pressure, the tumor cells are significantly more sensitive to chemotherapy. Our results emphasize the importance of disrupting the signals from the microenvironment to the tumor cells, in order to improve response rates. These findings may lead to the development of combination therapies targeting stromal signaling (such as PDGF and Hedgehog) that can abrogate the tumorigenic, metastatic and platinum resistant phenotypes of ovarian CSC through additional investigations.

5.
Anim Sci J ; 91(1): e13350, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32219980

RESUMEN

This study investigated the effect of type-I interferon (IFN) on the expression of matrix metalloproteinases (MMPs) of the bovine endometrial stromal cells (BES) and epithelial cells (BEE). The cells were separated and purified from the caruncles and cultured in DMEM/F-12 containing 10% fetal bovine serum. Spheroids were generated by using ascorbate. Zymograms of the supernatant showed that BEE predominantly expressed MMP-9, whereas MMP-2 was expressed in BES and homo-spheroids. While MMPs expression was not detected in hetero-spheroids. Real-time quantitative PCR revealed that type-I IFN and P4 suppressed the gene expression of MMP-2 and MMP-9 in hetero-spheroids, respectively. On the other hand, gelatin zymography analysis of the supernatant showed that type-I IFN strongly promote the clearance of MMPs. While zymograms of the MMPs stocked in the hetero-spheroids were significantly reduced by type-I IFN. Phenylmethanesulfonyl fluoride and leupeptin (both are serine proteinase inhibitors) significantly repressed the clearance of MMP-2 and MMP-9 induced by type-I IFN. Moreover, collagen fibers in hetero-spheroids significantly decreased after the treatment with type-I IFN. In conclusion, it was suggested that type-I IFN participate in the tissue remodeling by regulation the clearance of MMPs.


Asunto(s)
Bovinos/metabolismo , Endometrio/citología , Endometrio/metabolismo , Expresión Génica/efectos de los fármacos , Interferón Tipo I/farmacología , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Células del Estroma/metabolismo , Animales , Células Cultivadas , Femenino , Humanos , Embarazo
6.
ACS Appl Mater Interfaces ; 8(39): 25702-25713, 2016 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-27666317

RESUMEN

Hypoxic or near-anoxic conditions that occur in the core of transplanted islets induce necrosis and apoptosis during the early stages after transplantation, primarily due to loss of vascularization during the isolation process. Moreover, secretion of various cytokines from pancreatic islets is detrimental to the viability of islet cells in vitro. In this study, we aimed to protect pancreatic islet cells against apoptosis by establishing a method for in situ delivery of curcumin to the pancreatic islets. Self-assembled heterospheroids composed of pancreatic islet cells and curcumin-loaded polymeric microspheres were prepared by the three-dimensional cell culture technique. Release of curcumin in the microenvironment of pancreatic islets promoted survival of the islets. In hypoxic culture conditions, which mimic the in vivo conditions after transplantation, viability of the islets was significantly improved, as indicated by a decreased expression of pro-apoptotic protein and an increased expression of anti-apoptotic protein. Additionally, oxidative stress-induced cell death was suppressed. Thus, unlike co-transplantation of pancreatic islets and free microspheres, which provided a wide distribution of microspheres throughout the transplanted area, the heterospheroid transplantation resulted in colocalization of pancreatic islet cells and microspheres, thereby exerting beneficial effects on the cells.


Asunto(s)
Microesferas , Apoptosis , Curcumina , Islotes Pancreáticos , Trasplante de Islotes Pancreáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA