Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Int J Biol Macromol ; 280(Pt 2): 135581, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270892

RESUMEN

Crotoxin, a phospholipase A2 (PLA2) complex and the major Crotalus venom component, is responsible for the main symptoms described in crotalic snakebite envenomings and a key target for PLA2 inhibitors (PLIs). PLIs comprise the alpha, beta and gamma families, and, due to a lack of reports on beta-PLIs, this study aimed to heterologously express CdtPLI2 from Crotalus durissus terrificus venom gland to improve the knowledge of the neglected beta-PLI family. Thereby, recombinant CdtPLI2 (rCdtPLI2) was produced in the eukaryotic Pichia pastoris system to keep some native post-translational modifications. rCdtPLI2 (~41 kDa) presents both N- and O-linked glycans. Alpha-mannosidase digested-rCdtPLI2 (1 mol) strongly inhibited (73%) CB-Cdc catalytic activity (5 moles), demonstrating that glycosylations performed by P. pastoris affect rCdtPLI2 action. Digested-rCdtPLI2 also inhibited PLA2s from diverse Brazilian snake venoms. Furthermore, rCdtPLI2 (1 mol) abolished the catalytic activity of Lmr-PLA2 (5 moles) and reduced the CTx-Cdc (5 moles) enzyme activity by 65%, suppressing basic and acidic snake venom PLA2s. Additionally, crotalic antivenom did not recognize rCdtPLI2, suggesting a lack of neutralization by antivenom antibodies. These findings demonstrate that studying snake venom components may reveal interesting novel molecules to be studied in the snakebite treatment and help to understand these underexplored inhibitors.

2.
Vaccines (Basel) ; 12(8)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39204043

RESUMEN

The SARS-CoV-2 Omicron variant and its sublineages continue to cause COVID-19-associated pediatric hospitalizations, severe disease, and death globally. BNT162b2 and CoronaVac are the main vaccines used in Chile. Much less is known about the Wuhan-Hu-1 strain-based vaccines in the pediatric population compared to adults. Given the worldwide need for booster vaccinations to stimulate the immune response against new Omicron variants of SARS-CoV-2, we characterized the humoral and cellular immune response against Omicron variant BA.1 in a pediatric cohort aged 10 to 16 years who received heterologous vaccination based on two doses of CoronaVac, two doses of CoronaVac (2x) plus one booster dose of BNT162b2 [CoronaVac(2x) + BNT162b2 (1x)], two doses of CoronaVac plus two booster doses of BNT162b2 [CoronaVac(2x) + BNT162b2 (2x)], and three doses of BNT162b2. We observed that the [CoronaVac(2x) + BNT162b2 (2x)] vaccination showed higher anti-S1 and neutralizing antibody titers and CD4 and CD8 T cell immunity specific to the Omicron variant compared to immunization with two doses of CoronaVac alone. Furthermore, from all groups tested, immunity against Omicron was highest in individuals who received three doses of BNT162b2. We conclude that booster vaccination with BNT162b2, compared to two doses of CoronaVac alone, induces a greater protective immunity.

3.
J Genet Eng Biotechnol ; 22(3): 100396, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39179325

RESUMEN

Lipases are used in many food, energy, and pharmaceutical processes. Thus, new systems have been sought to synthesize alternative lipases with potential biotechnological applications. Kluyveromyces marxianus is a yeast with recognized lipase activity; at least ten putative lipases/esterases in its genome have been detected, and two of them possess a signal peptide for extracellular secretion. The study of extracellular lipases becomes more relevant since they usually have higher activity rates than intracellular lipases and simpler purification mechanisms. For these reasons, this study aimed to characterize the production and lipase activity of the putative extracellular lipases of the K. marxianus L-2029 strain, encoded in the genes LIP3 and YJR107W. Both genes were heterologously expressed in Saccharomyces cerevisiae BY4742 (yeast strain without extracellular lipase activity) using a pYES2.1/V5-His-TOPO® plasmid. Herein, we show evidence that the strain transformed with the LIP3 gene did not show lipase activity during flask galactose induction. On the other hand, the strain transformed with the YJR107W gene showed a specific activity of 0.397 U/mg, with an optimum temperature of 37 °C and pH 6. For maximum cell production, glucose and yeast extract concentrations were evaluated by a 22 factorial design, followed by the validation of the best concentrations predicted by a statistical model; a 22 factorial design was also carried out to evaluate the concentration of the inducer galactose on the transformed strains, and the intracellular and extracellular lipase specific activities were quantified. Finally, the biomass and lipase production were determined for each strain, which was grown in a stirred tank bioreactor with a working volume of 1.5 L. The specific activities of the transformed strains obtained in the bioreactor were 1.36 U/mg for the LIP3 transformant and 1.25 U/mg for the YJR107W transformant, respectively.

4.
Parasite Immunol ; 46(7): e13059, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39039790

RESUMEN

Immunosuppressed patients, particularly transplant recipients, can develop severe strongyloidiasis. This study aimed to detect anti-Strongyloides IgG antibodies in a panel of sera from liver transplant patients. Two techniques were used: ELISA as the initial screening test and Western blotting as a confirmatory test. ELISA reactivity of 10.9% (32/294) was observed. The 40-30 kDa fraction was recognised in 93.7% (30/32) of the patients, resulting in a positivity rate of 10.2%. These data highlight the importance of serological screening for Strongyloides stercoralis infection in liver transplant recipients.


Asunto(s)
Anticuerpos Antihelmínticos , Ensayo de Inmunoadsorción Enzimática , Inmunoglobulina G , Trasplante de Hígado , Strongyloides stercoralis , Estrongiloidiasis , Receptores de Trasplantes , Humanos , Estrongiloidiasis/diagnóstico , Estrongiloidiasis/inmunología , Estrongiloidiasis/sangre , Anticuerpos Antihelmínticos/sangre , Animales , Strongyloides stercoralis/inmunología , Inmunoglobulina G/sangre , Western Blotting , Masculino , Tamizaje Masivo/métodos , Persona de Mediana Edad , Femenino , Adulto , Enfermedades Desatendidas/diagnóstico , Enfermedades Desatendidas/epidemiología , Enfermedades Desatendidas/inmunología , Huésped Inmunocomprometido , Anciano
5.
Metab Eng Commun ; 19: e00243, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39040142

RESUMEN

Clostridium thermocellum is a thermophilic anaerobic bacterium that could be used for cellulosic biofuel production due to its strong native ability to consume cellulose, however its ethanol production ability needs to be improved to enable commercial application. In our previous strain engineering work, we observed a spontaneous mutation in the native adhE gene that reduced ethanol production. Here we attempted to complement this mutation by heterologous expression of 18 different alcohol dehydrogenase (adh) genes. We were able to express all of them successfully in C. thermocellum. Surprisingly, however, none of them increased ethanol production, and several actually decreased it. Our findings contribute to understanding the correlation between C. thermocellum ethanol production and Adh enzyme cofactor preferences. The identification of a set of adh genes that can be successfully expressed in this organism provides a foundation for future investigations into how the properties of Adh enzymes affect ethanol production.

6.
Vaccine ; 42(25): 126066, 2024 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38876835

RESUMEN

This study aims to analyze if the results from different serological assays, used alone or combined, could match the outcome of challenge infection with foot-and-mouth disease virus (FMDV) after vaccination in cattle. Day-of-challenge sera from animals that had been vaccinated 21 days before with monovalent formulations containing inactivated A Iran 96 or A Iran 99 virus strains were used. Challenge and serology were performed with A22 Iraq strain. IgG1 titers and total-IgG avidity indexes were significantly higher in protected animals (p < 0.01) while IgG2-titers were not related to protection (p > 0.05). An IgG1 avidity ELISA was developed to analyze in one step, IgG1 levels and avidity. This assay estimated protection with 96 % accuracy. A strong agreement with challenge results was achieved (K = 0.85), suggesting a role of high-affinity IgG1 in protection against FMDV. These results support the assessment of the single dilution IgG1-Avidity ELISA to predict cross-protection in FMDV-vaccinated cattle.


Asunto(s)
Anticuerpos Antivirales , Afinidad de Anticuerpos , Enfermedades de los Bovinos , Protección Cruzada , Ensayo de Inmunoadsorción Enzimática , Virus de la Fiebre Aftosa , Fiebre Aftosa , Inmunoglobulina G , Vacunación , Vacunas Virales , Animales , Fiebre Aftosa/prevención & control , Fiebre Aftosa/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Bovinos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Virus de la Fiebre Aftosa/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacunas Virales/inmunología , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/inmunología , Protección Cruzada/inmunología , Vacunación/métodos
7.
Artículo en Inglés | MEDLINE | ID: mdl-38770186

RESUMEN

Background: Spinal ventral root injuries generate significant motoneuron degeneration, which hinders full functional recovery. The poor prognosis of functional recovery can be attributed to the use or combination of different therapeutic approaches. Several molecules have been screened as potential treatments in combination with surgical reimplantation of the avulsed roots, the gold standard approach for such injuries. Among the studied molecules, human natural killer-1 (HNK-1) stands out as it is related to the stimulation of motor axon outgrowth. Therefore, we aimed to comparatively investigate the effects of local administration of an HNK-1 mimetic peptide (mp-HNK-1) and systemic treatment with ursolic acid (UA), another HNK-1 mimetic, after ventral root avulsion and reimplantation with heterologous fibrin biopolymer (HFB). Methods: Female mice of the isogenic strain C57BL/6JUnib were divided into five experimental groups: Avulsion, Reimplantation, mp-HNK-1 (in situ), and UA (systemic treatment). Mice were evaluated 2 and 12 weeks after surgery. Functional assessment was performed every four days using the Catwalk platform. Neuronal survival was analyzed by cytochemistry, and glial reactions and synaptic coverage were evaluated by immunofluorescence. Results: Treatment with UA elicited long-term neuroprotection, accompanied by a decrease in microglial reactions, and reactive astrogliosis. The neuroprotective effects of UA were preceded by increased glutamatergic and GABAergic inputs in the ventral spinal cord two weeks after injury. However, a single application of mp-HNK-1 had no significant effects. Functional analysis showed that UA treatment led to an improvement in motor and sensory recovery. Conclusion: Overall, the results indicate that UA is neuroprotective, acting on glial cells and synaptic maintenance, and the combination of these findings led to a better functional recovery.

8.
Lancet Reg Health Am ; 34: 100750, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38699214

RESUMEN

Background: Increased pediatric COVID-19 occurrence due to the SARS-CoV-2 Omicron variant has raised concerns about the effectiveness of existing vaccines. The protection provided by the SOBERANA-02-Plus vaccination scheme against this variant has not yet been studied. We aimed to evaluate the scheme's effectiveness against symptomatic Omicron infection and severe disease in children. Methods: In September 2021, Cuba implemented a mass pediatric immunization with the heterologous SOBERANA-02-Plus scheme: 2 doses of conjugated SOBERANA-02 followed by a heterologous SOBERANA-Plus dose. By December, before the Omicron outbreak, 95.4% of 2-18 years-old had been fully immunized. During the entire Omicron wave, we conducted a nationwide longitudinal post-vaccination case-population study to evaluate the real-world effectiveness of the SOBERANA-02-Plus scheme against symptomatic infection and severe disease in children without previous SARS-CoV-2 infection. The identification of COVID-19 cases relied on surveillance through first line services, which refer clinical suspects to pediatric hospitals where they are diagnosed based on a positive RT-PCR test. We defined the Incidence Rate ratio (IRR) as IRvaccinated age group/IRunvaccinated 1-year-old and calculated vaccine effectiveness as VE = (1-IRR)∗100%. 24 months of age being the 'eligible for vaccination' cut-off, we used a regression discontinuity approach to estimate effectiveness by contrasting incidence in all unvaccinated 1-year-old versus vaccinated 2-years-old. Estimates in the vaccinated 3-11 years-old are reported from a descriptive perspective. Findings: We included 1,098,817 fully vaccinated 2-11 years-old and 98,342 not vaccinated 1-year-old children. During the 24-week Omicron wave, there were 7003/26,241,176 person-weeks symptomatic COVID-19 infections in the vaccinated group (38.2 per 105 person-weeks in 2-years-old and 25.5 per 105 person-weeks in 3-11 years-old) against 3577/2,312,273 (154.7 per 105 person-weeks) in the unvaccinated group. The observed overall vaccine effectiveness against symptomatic infection was 75.3% (95% CI, 73.5-77.0%) in 2-years-old children, and 83.5% (95% CI, 82.8-84.2%) in 3-11 years-old. It was somewhat lower during Omicron BA.1 then during Omicron BA.2 variant circulation, which took place 1-3 and 4-6 months after the end of the vaccination campaign. The effectiveness against severe symptomatic disease was 100.0% (95% CI not estimated) and 94.6% (95% CI, 82.0-98.6%) in the respective age groups. No child death from COVID-19 was observed. Interpretation: Immunization of 2-11 years-old with the SOBERANA-02-Plus scheme provided strong protection against symptomatic and severe disease caused by the Omicron variant, which was sustained during the six months post-vaccination follow-up. Our results contrast with the observations in previous real-world vaccine effectiveness studies in children, which might be explained by the type of immunity a conjugated protein-based vaccine induces and the vaccination strategy used. Funding: National Fund for Science and Technology (FONCI-CITMA-Cuba).

9.
J Equine Vet Sci ; 138: 105095, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810588

RESUMEN

Intracytoplasmic sperm injection (ICSI) in horses is currently employed for clinical and commercial uses, but the protocol could be optimized to improve its efficiency. We have hypothesized that destabilization of plasma and acrosomal membranes prior to injection would positively impact the developmental potential of equine zygotes generated by ICSI. This study evaluated effects of the sperm treatment with lysolecithin on plasma and acrosomal membranes and on oocyte activation ability, initially following heterologous ICSI on bovine oocytes and subsequently employing equine oocytes. The effects of the lysolecithin -treatment on the efficiency of conventional and piezo-assisted equine ICSI were evaluated. To do this, the equine sperm were treated with different concentrations of lysolecithin and the sperm plasma membrane, acrosome and DNA integrity were evaluated by flow cytometry. The results showed that a lysolecithin concentration of 0.08 % destabilized the membranes of all sperm and affected DNA integrity within the range described for the species (8-30 %). In addition, the heterologous ICSI assay showed that lysolecithin treatment was detrimental to the sperm's ability to activate the oocyte, therefore, chemical oocyte activation was used after equine ICSI after injection with lysolecithin -treated sperm. This group showed similar developmental rate to the control group with and without exogenous activation. In conclusion, lysolecithin pre-treatment is not necessary when using ICSI to produce equine embryos in vitro. The results from the current study provide additional insight regarding the factors impacting ICSI in horses.


Asunto(s)
Lisofosfatidilcolinas , Inyecciones de Esperma Intracitoplasmáticas , Espermatozoides , Animales , Caballos , Inyecciones de Esperma Intracitoplasmáticas/veterinaria , Inyecciones de Esperma Intracitoplasmáticas/métodos , Masculino , Lisofosfatidilcolinas/farmacología , Espermatozoides/efectos de los fármacos , Femenino , Oocitos/efectos de los fármacos
10.
Front Bioeng Biotechnol ; 12: 1335898, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659646

RESUMEN

Human Embryonic Kidney cells (HEK293) are a popular host for recombinant protein expression and production in the biotechnological industry. This has driven within both, the scientific and the engineering communities, the search for strategies to increase their protein productivity. The present work is inserted into this search exploring the impact of adding sodium acetate (NaAc) into a batch culture of HEK293 cells. We monitored, as a function of time, the cell density, many external metabolites, and the supernatant concentration of the heterologous extra-cellular domain ECD-Her1 protein, a protein used to produce a candidate prostate cancer vaccine. We observed that by adding different concentrations of NaAc (0, 4, 6 and 8 mM), the production of ECD-Her1 protein increases consistently with increasing concentration, whereas the carrying capacity of the medium decreases. To understand these results we exploited a combination of experimental and computational techniques. Metabolic Flux Analysis (MFA) was used to infer intracellular metabolic fluxes from the concentration of external metabolites. Moreover, we measured independently the extracellular acidification rate and oxygen consumption rate of the cells. Both approaches support the idea that the addition of NaAc to the culture has a significant impact on the metabolism of the HEK293 cells and that, if properly tuned, enhances the productivity of the heterologous ECD-Her1 protein.

11.
Enzyme Microb Technol ; 177: 110424, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38479075

RESUMEN

In this work, the polygalacturonase (TL-PG1) from the thermophilic fungus Thermomyces lanuginosus was heterologously produced for the first time in the yeast Komagataella phaffii. The TL-PG1 was successfully expressed under the control of the AOX1 promoter and sequentially purified by His-tag affinity. The purified recombinant pectinase exhibited an activity of 462.6 U/mL toward polygalacturonic acid under optimal conditions (pH 6 and 55 ˚C) with a 2.83 mg/mL and 0.063 µmol/minute for Km and Vmax, respectively. When used as supplementation for biomass hydrolysis, TL-PG1 demonstrated synergy with the enzymatic cocktail Ctec3 to depolymerize orange citrus pulp, releasing 1.43 mg/mL of reducing sugar. In addition, TL-PG1 exhibited efficiency in fabric bioscouring, showing potential usage in the textile industry. Applying a protein dosage of 7 mg/mL, the time for the fabric to absorb water was 19.77 seconds (ten times faster than the control). Adding the surfactant Triton to the treatment allowed the reduction of the enzyme dosage by 50% and the water absorption time to 6.38 seconds. Altogether, this work describes a new versatile polygalacturonase from T. lanuginosus with the potential to be employed in the hydrolysis of lignocellulosic biomass and bioscouring.


Asunto(s)
Proteínas Fúngicas , Poligalacturonasa , Saccharomycetales , Biomasa , Eurotiales/enzimología , Eurotiales/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidrólisis , Cinética , Poligalacturonasa/metabolismo , Poligalacturonasa/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Saccharomycetales/genética , Saccharomycetales/enzimología , Saccharomycetales/metabolismo , Industria Textil , Textiles
12.
J Food Sci ; 89(4): 2124-2136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462841

RESUMEN

In this study, we pursued the heterologous expression of the xylanase gene from Trichoderma atroviride, a native fungus in the province of Misiones, and used it to enhance the textural properties of baked goods through varying enzymatic concentrations. This marks the inaugural exploration into its functionality in the context of bread production. The recombinant xylanase exhibited improved activity, reaching 36,292 U L-1, achieved by supplementing the culture medium with dextrose. Following the optimization of recombinant xylanase concentration, promising results emerged, notably reducing hardness and chewiness parameters of bread significantly. Our findings underscore the potential of this native fungal enzyme for industrial processes, offering a sustainable and efficient means to enhance the quality of baked goods with broad implications for the food industry. No prior research has been documented on the heterologous expression of the xylanase gene derived from T. atroviride, from the Misiones rainforest, expressed in Kluyveromyces lactis. PRACTICAL APPLICATION: This research, focusing on the isolation and cloning of xylanase enzyme from Trichoderma atroviride, a native fungus in the province of Misiones, offers a valuable tool for improving the texture of bakery products. By optimizing enzyme concentrations, our findings present a practical approach for the food industry, offering a viable solution to improve the overall quality and consumer satisfaction of bakery products.


Asunto(s)
Industria de Alimentos , Hypocreales , Bosque Lluvioso , Argentina
14.
Probiotics Antimicrob Proteins ; 16(2): 352-366, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36746838

RESUMEN

Target delivery of therapeutic agents with anti-inflammatory properties using probiotics as delivery and recombinant protein expression vehicles is a promising approach for the prevention and treatment of many diseases, such as cancer and intestinal immune disorders. Lactococcus lactis, a Lactic Acid Bacteria (LAB) widely used in the dairy industry, is one of the most important microorganisms with GRAS status for human consumption, for which biotechnological tools have already been developed to express and deliver recombinant biomolecules with anti-inflammatory properties. Cytokines, for  example, are immune system communication molecules present at virtually all levels of the immune response. They are essential in cellular and humoral processes, such as hampering inflammation or adjuvating in the adaptive immune response, making them good candidates for therapeutic approaches. This review discusses the advances in the development of new therapies and prophylactic approaches using LAB to deliver/express cytokines for the treatment of inflammatory and autoimmune diseases in the future.


Asunto(s)
Enfermedades Autoinmunes , Lactococcus lactis , Humanos , Lactococcus lactis/metabolismo , Interleucinas/metabolismo , Citocinas/metabolismo , Enfermedades Autoinmunes/tratamiento farmacológico , Antiinflamatorios
15.
Future Microbiol ; 19: 157-171, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37882841

RESUMEN

Aim: To review the available literature about heterologous expression of fungal L-asparaginase (L-ASNase). Materials & methods: A search was conducted across PubMed, Science Direct, Scopus and Web of Science databases; 4172 citations were identified and seven articles were selected. Results: The results showed that heterologous expression of fungal L-ASNase was performed mostly in bacterial expression systems, except for a study that expressed L-ASNase in a yeast system. Only three publications reported the purification and characterization of the enzyme. Conclusion: The information reported in this systematic review can contribute significantly to the recognition of the importance of biotechnological techniques for L-ASNase production.


Asparaginase is a common treatment for the most common type of leukemia in children. These treatments generally use asparaginase sourced from bacteria. Some people can experience bad reactions to these treatments. One way that has been explored to avoid this is to use asparaginase sourced from fungi because they are more similar to humans. However, fungi produce less asparaginase than bacteria. This review looks into ways that the production of fungal asparaginases can be made more productive.


Asunto(s)
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Asparaginasa/genética , Asparaginasa/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Bacterias/metabolismo , Antineoplásicos/uso terapéutico
16.
Acta cir. bras ; Acta cir. bras;39: e390624, 2024. ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1533361

RESUMEN

Purpose: This study aimed to compare the degree of maturation and development of fetal pig segmental intestinal tissue with that of spheroids created by in-vitro reaggregation of dissociated fetal intestinal cells after transplantation into immunodeficient mice. Methods: Fetal pig small intestines were transplanted as segmental grafts into the omentum and subrenal capsules of immunodeficient mice or enzymatically treated to generate single cells. Spheroids made by in-vitro reaggregation of these cells were transplanted into the subrenal capsules of immunodeficient mice. The segmental grafts and spheroids were harvested four and eight weeks after transplantation, and the structural maturity and in-vivo development of these specimens were histologically evaluated. Results: The spheroids were engrafted and supplied blood vessels from the host mice, but an intestinal layered structure was not clearly observed, and there was almost no change in size. On the other hand, the segmental grafts formed deep crypts in the mucus membrane, the inner circular layer, and outer longitudinal muscles. The crypts of the transplanted grafts harvested at eight weeks were much deeper, and the smooth muscle layer and the enteric nervous system were more mature than those of grafts harvested at the fourth week, although the intestinal peristaltic wave was not observed. Conclusions: Spheroids created from fetal small intestinal cells could not form layered structures or mature sufficiently. Conversely, segmental tissues structurally matured and developed after in-vivo transplantation and are therefore potential grafts for transplantation.


Asunto(s)
Animales , Ratones , Porcinos , Trasplante Heterólogo/veterinaria , Trasplante de Tejido Fetal/veterinaria , Madurez de los Órganos Fetales
17.
Protein Expr Purif ; 216: 106415, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38104791

RESUMEN

Cutinases are serine esterases that belong to the α/ß hydrolases superfamily. The natural substrates for these enzymes are cutin and suberin, components of the plant cuticle, the first barrier in the defense system against pathogen invasion. It is well-reported that plant pathogens produce cutinases to facilitate infection. Fusarium verticillioides, one important corn pathogens, is an ascomycete upon which its cutinases are poorly explored. Consequently, the objective of this study was to perform the biochemical characterization of three precursor cutinases (FvCut1, FvCut2, and FvCut3) from F. verticillioides and to obtain structural insights about them. The cutinases were produced in Escherichia coli and purified. FvCut1, FvCut2, and FvCut3 presented optimal temperatures of 20, 40, and 35 °C, and optimal pH of 9, 7, and 8, respectively. Some chemicals stimulated the enzymatic activity. The kinetic parameters revealed that FvCut1 has higher catalytic efficiency (Kcat/Km) in the p-nitrophenyl-butyrate (p-NPB) substrate. Nevertheless, the enzymes were not able to hydrolyze polyethylene terephthalate (PET). Furthermore, the three-dimensional models of these enzymes showed structural differences among them, mainly FvCut1, which presented a narrower opening cleft to access the catalytic site. Therefore, our study contributes to exploring the diversity of fungal cutinases and their potential biotechnological applications.


Asunto(s)
Ascomicetos , Fusarium , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/química , Fusarium/genética
18.
Front Plant Sci ; 14: 1299025, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38098795

RESUMEN

Sugarcane (Saccharum spp.) is an important crop for sugar and bioethanol production worldwide. To maintain and increase sugarcane yields in marginal areas, the use of nitrogen (N) fertilizers is essential, but N overuse may result in the leaching of reactive N to the natural environment. Despite the importance of N in sugarcane production, little is known about the molecular mechanisms involved in N homeostasis in this crop, particularly regarding ammonium (NH4 +), the sugarcane's preferred source of N. Here, using a sugarcane bacterial artificial chromosome (BAC) library and a series of in silico analyses, we identified an AMMONIUM TRANSPORTER (AMT) from the AMT2 subfamily, sugarcane AMMONIUM TRANSPORTER 3;3 (ScAMT3;3), which is constitutively and highly expressed in young and mature leaves. To characterize its biochemical function, we ectopically expressed ScAMT3;3 in heterologous systems (Saccharomyces cerevisiae and Arabidopsis thaliana). The complementation of triple mep mutant yeast demonstrated that ScAMT3;3 is functional for NH3/H+ cotransport at high availability of NH4 + and under physiological pH conditions. The ectopic expression of ScAMT3;3 in the Arabidopsis quadruple AMT knockout mutant restored the transport capacity of 15N-NH4 + in roots and plant growth under specific N availability conditions, confirming the role of ScAMT3;3 in NH4 + transport in planta. Our results indicate that ScAMT3;3 belongs to the low-affinity transport system (Km 270.9 µM; Vmax 209.3 µmol g-1 root DW h-1). We were able to infer that ScAMT3;3 plays a presumed role in NH4 + source-sink remobilization in the shoots via phloem loading. These findings help to shed light on the functionality of a novel AMT2-type protein and provide bases for future research focusing on the improvement of sugarcane yield and N use efficiency.

19.
Front Immunol ; 14: 1271209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022542

RESUMEN

In this study, we evaluated the efficacy of a heterologous three-dose vaccination schedule against the Omicron BA.1 SARS-CoV-2 variant infection using a mouse intranasal challenge model. The vaccination schedules tested in this study consisted of a primary series of 2 doses covered by two commercial vaccines: an mRNA-based vaccine (mRNA1273) or a non-replicative vector-based vaccine (AZD1222/ChAdOx1, hereafter referred to as AZD1222). These were followed by a heterologous booster dose using one of the two vaccine candidates previously designed by us: one containing the glycosylated and trimeric spike protein (S) from the ancestral virus (SW-Vac 2µg), and the other from the Delta variant of SARS-CoV-2 (SD-Vac 2µg), both formulated with Alhydrogel as an adjuvant. For comparison purposes, homologous three-dose schedules of the commercial vaccines were used. The mRNA-based vaccine, whether used in heterologous or homologous schedules, demonstrated the best performance, significantly increasing both humoral and cellular immune responses. In contrast, for the schedules that included the AZD1222 vaccine as the primary series, the heterologous schemes showed superior immunological outcomes compared to the homologous 3-dose AZD1222 regimen. For these schemes no differences were observed in the immune response obtained when SW-Vac 2µg or SD-Vac 2µg were used as a booster dose. Neutralizing antibody levels against Omicron BA.1 were low, especially for the schedules using AZD1222. However, a robust Th1 profile, known to be crucial for protection, was observed, particularly for the heterologous schemes that included AZD1222. All the tested schedules were capable of inducing populations of CD4 T effector, memory, and follicular helper T lymphocytes. It is important to highlight that all the evaluated schedules demonstrated a satisfactory safety profile and induced multiple immunological markers of protection. Although the levels of these markers were different among the tested schedules, they appear to complement each other in conferring protection against intranasal challenge with Omicron BA.1 in K18-hACE2 mice. In summary, the results highlight the potential of using the S protein (either ancestral Wuhan or Delta variant)-based vaccine formulation as heterologous boosters in the management of COVID-19, particularly for certain commercial vaccines currently in use.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , ChAdOx1 nCoV-19 , Humanos , Animales , Adyuvantes Inmunológicos , Modelos Animales de Enfermedad , ARN Mensajero
20.
Vaccines (Basel) ; 11(11)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38006064

RESUMEN

Mucosal vaccination appears to be suitable to protect against SARS-CoV-2 infection. In this study, we tested an intranasal mucosal vaccine candidate for COVID-19 that consisted of a cationic liposome containing a trimeric SARS-CoV-2 spike protein and CpG-ODNs, a Toll-like receptor 9 agonist, as an adjuvant. In vitro and in vivo experiments indicated the absence of toxicity following the intranasal administration of this vaccine formulation. First, we found that subcutaneous or intranasal vaccination protected hACE-2 transgenic mice from infection with the wild-type (Wuhan) SARS-CoV-2 strain, as shown by weight loss and mortality indicators. However, when compared with subcutaneous administration, the intranasal route was more effective in the pulmonary clearance of the virus and induced higher neutralizing antibodies and anti-S IgA titers. In addition, the intranasal vaccination afforded protection against gamma, delta, and omicron virus variants of concern. Furthermore, the intranasal vaccine formulation was superior to intramuscular vaccination with a recombinant, replication-deficient chimpanzee adenovirus vector encoding the SARS-CoV-2 spike glycoprotein (Oxford/AstraZeneca) in terms of virus lung clearance and production of neutralizing antibodies in serum and bronchial alveolar lavage (BAL). Finally, the intranasal liposomal formulation boosted heterologous immunity induced by previous intramuscular vaccination with the Oxford/AstraZeneca vaccine, which was more robust than homologous immunity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA