Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Stem Cell Rev Rep ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259445

RESUMEN

BACKGROUND: Derivation of hepatocytes from stem cells has been established through various protocols involving growth factor (GF) and small molecule (SM) agents, among others. However, mesenchymal stem cell-based derivation of hepatocytes still remains expensive due to the use of a cocktail of growth factors, and a long duration of differentiation is needed, thus limiting its potential clinical application. METHODS: In this study, we developed a chemically defined differentiation strategy that is exclusively based on SM and takes 14 days, while the GF-based protocol requires 23-28 days. RESULTS: We optimized a stage-specific differentiation protocol for the differentiation of rat bone marrow-derived mesenchymal stem cells (MSCs) into functional hepatocyte-like cells (dHeps) that involved four stages, i.e., definitive endoderm (DE), hepatic competence (HC), hepatic specification (HS) and hepatic differentiation and growth. We further generated hepatic tissue using human decellularized liver extracellular matrix and compared it with hepatic tissue derived from the growth factor-based protocol at the transcriptional level. dHep, upon transplantation in a rat model of acute liver injury (ALI), was capable of ameliorating liver injury in rats and improving liver function and tissue damage compared to those in the ALI model. CONCLUSIONS: In summary, this is the first study in which hepatocytes and hepatic tissue were derived from MSCs utilizing a stage-specific strategy by exclusively using SM as a differentiation factor.

2.
J Nanobiotechnology ; 22(1): 541, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39238002

RESUMEN

Liver fibrosis is a serious global health issue for which effective treatment remains elusive. Chemical-induced hepatocyte-like cells (ciHeps) have emerged as an appealing source for cell transplantation therapy, although they present several challenges such as the risk of lung thromboembolism or hemorrhage. Apoptotic vesicles (apoVs), small membrane vesicles generated during the apoptosis process, have gained attention for their role in regulating various physiological and pathological processes. In this study, we generated ciHep-derived apoVs (ciHep-apoVs) and investigated their therapeutic potential in alleviating liver fibrosis. Our findings revealed that ciHep-apoVs induced the transformation of macrophages into an anti-inflammatory phenotype, effectively suppressed the activity of activated hepatic stellate cells (aHSCs), and enhanced the survival of hepatocytes. When intravenously administered to mice with liver fibrosis, ciHep-apoVs were primarily engulfed by macrophages and myofibroblasts, leading to a reduction in liver inflammation and fibrosis. Proteomic and miRNA analyses showed that ciHep-apoVs were enriched in various functional molecules that modulate crucial cellular processes, including metabolism, signaling transduction, and ECM-receptor interactions. ciHep-apoVs effectively suppressed aHSCs activity through the synergistic inhibition of glycolysis, the PI3K/AKT/mTOR pathway, and epithelial-to-mesenchymal transition (EMT) cascades. These findings highlight the potential of ciHep-apoVs as multifunctional nanotherapeutics for liver fibrosis and provide insights into the treatment of other liver diseases and fibrosis in other organs.


Asunto(s)
Apoptosis , Hepatocitos , Cirrosis Hepática , Animales , Ratones , Cirrosis Hepática/patología , Hepatocitos/metabolismo , Fibroblastos/metabolismo , Macrófagos/metabolismo , Células Estrelladas Hepáticas/metabolismo , Transducción de Señal , Masculino , Ratones Endogámicos C57BL , MicroARNs/metabolismo , MicroARNs/genética , Células RAW 264.7 , Humanos
3.
EMBO Rep ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232200

RESUMEN

Current culture systems available for studying hepatitis D virus (HDV) are suboptimal. In this study, we demonstrate that hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) are fully permissive to HDV infection across various tested genotypes. When co-infected with the helper hepatitis B virus (HBV) or transduced to express the HBV envelope protein HBsAg, HLCs effectively release infectious progeny virions. We also show that HBsAg-expressing HLCs support the extracellular spread of HDV, thus providing a valuable platform for testing available anti-HDV regimens. By challenging the cells along the differentiation with HDV infection, we have identified CD63 as a potential HDV co-entry factor that was rate-limiting for HDV infection in immature hepatocytes. Given their renewable source and the potential to derive hPSCs from individual patients, we propose HLCs as a promising model for investigating HDV biology. Our findings offer new insights into HDV infection and expand the repertoire of research tools available for the development of therapeutic interventions.

4.
Stem Cell Res ; 81: 103534, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39146664

RESUMEN

The lack of equitable representation of African diversity in scientific resources, such as genome-wide association studies and human induced pluripotent stem cell (hiPSC) repositories, has perpetuated inequalities in the advancement of health research. HiPSCs could be transformative in regenerative and precision medicine, therefore, the generation of diverse lines is critical in the establishment of African-relevant preclinical cellular models. HiPSC lines were derived from two healthy donors of Black African ancestry using Sendai virus reprogramming of dermal fibroblasts, and characterised to confirm stemness markers, trilineage differentiation, and genetic integrity. These hiPSCs represent a valuable resource for modelling African relevant disease biology.

5.
Biol Cell ; : e2400049, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180248

RESUMEN

BACKGROUND INFORMATION: Extracellular matrix (ECM)-derived hydrogels are frequently used in three-dimensional (3D) cell culture and organoid formation in several tissues. However, in the 3D cultivation of testicular cells, the hyaluronic acid (HA) hydrogel has not received as much attention. This study examined the effects of three distinct composites, including HA-alginate (HA-Alg), HA-alginate-collagen (HA-Alg-Col), and HA-alginate-decellularized ECM (HA-Alg-dECM), on mouse testicular cell culture and in vitro spermatogenesis. METHODS: For the creation of composites, the concentration of biomaterials used was 0.5% HA, 1% alginate, 2.5 mg/mL collagen, and 25 mg/mL dECM derived from the testicles of Rams. After 3D culture of 5 days post-partum (dpp) mouse testicular cells for 14 days, HA-Alg was selected as a superior composite due to the greater number and size of the produced organoids. Then, cell culture was rerun by HA-Alg for 14 days, which was later extended for an additional 28 days. In addition, the 3D culture of 10 dpp mouse testicular cells was used to compare with 5 dpp mice on day 14. The morphology and gene expression were analyzed using appropriate techniques. RESULTS: On day 14, the HA-Alg hydrogel showed significantly more organoids in terms of size and number than the other two groups (p < 0.05); nevertheless, none of the groups showed the expected signs of testis organoids. Remarkably, on day 14, the histology and immunostaining tests revealed features of hepatocyte-like cells (HLCs) and albumin production as a marker of HLC functionality. Furthermore, the analysis of gene expression verified the significant expression of angiogenesis markers (p < 0.01). After the extended culture to 28 days, 5 dpp testicular cells once more differentiated into erythrocytes and HLCs, while a small number of organoids showed the characteristic of renal cells. Cell culture of 10 dpp mice for 14 days showed a wide range of cell lineages, including renal, glandular, chondrocyte, and hepatocyte-like cells in comparison to the 5 dpp mice. CONCLUSION AND SIGNIFICANCE: While the HA-Alg composite did not support spermatogenesis in the 3D culture of mouse testicular cells, it demonstrated an unpredicted potential for promoting the differentiation of neonate mouse testicular cells into HLC, erythrocytes, and other cell lineages.

6.
Methods Mol Biol ; 2837: 1-9, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044070

RESUMEN

Hepatitis B, the leading cause of liver diseases worldwide, is a result of infection with hepatitis B virus (HBV). Due to its obligate intracellular life cycle, culture systems for efficient HBV replication are vital. Although basic and translational research on HBV has been performed for many years, conventional hepatocellular culture systems are not optimal. These studies have greatly benefited from recent improvements in cell culture models based on stem cell technology for HBV replication and infection studies. Here we describe a protocol for the differentiation of human stem cell-derived hepatocyte-like cells (HLCs) and subsequent HBV infection. HLCs are capable of expressing hepatocyte markers and host factors important for hepatic function maintenance. These cells fully support HBV infection and virus-host interactions. Stem cell-derived HLCs provide a new tool for antiviral drug screening and development.


Asunto(s)
Diferenciación Celular , Virus de la Hepatitis B , Hepatitis B , Hepatocitos , Replicación Viral , Humanos , Hepatocitos/virología , Hepatocitos/citología , Virus de la Hepatitis B/fisiología , Hepatitis B/virología , Técnicas de Cultivo de Célula/métodos , Células Madre/virología , Células Madre/citología , Células Madre/metabolismo , Células Cultivadas
7.
Front Cell Dev Biol ; 12: 1383928, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694820

RESUMEN

The generation of iPSC-derived hepatocyte-like cells (HLCs) is a powerful tool for studying liver diseases, their therapy as well as drug development. iPSC-derived disease models benefit from their diverse origin of patients, enabling the study of disease-associated mutations and, when considering more than one iPSC line to reflect a more diverse genetic background compared to immortalized cell lines. Unfortunately, the use of iPSC-derived HLCs is limited due to their lack of maturity and a rather fetal phenotype. Commercial kits and complicated 3D-protocols are cost- and time-intensive and hardly useable for smaller working groups. In this study, we optimized our previously published protocol by fine-tuning the initial cell number, exchanging antibiotics and basal medium composition and introducing the small molecule forskolin during the HLC maturation step. We thereby contribute to the liver research field by providing a simple, cost- and time-effective 2D differentiation protocol. We generate functional HLCs with significantly increased HLC hallmark gene (ALB, HNF4α, and CYP3A4) and protein (ALB) expression, as well as significantly elevated inducible CYP3A4 activity.

8.
Front Genet ; 15: 1375467, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706791

RESUMEN

Leigh syndrome French Canadian type (LSFC) is a recessive neurodegenerative disease characterized by tissue-specific deficiency in cytochrome c oxidase (COX), the fourth complex in the oxidative phosphorylation system. LSFC is caused by mutations in the leucine rich pentatricopeptide repeat containing gene (LRPPRC). Most LSFC patients in Quebec are homozygous for an A354V substitution that causes a decrease in the expression of the LRPPRC protein. While LRPPRC is ubiquitously expressed and is involved in multiple cellular functions, tissue-specific expression of LRPPRC and COX activity is correlated with clinical features. In this proof-of-principle study, we developed human induced pluripotent stem cell (hiPSC)-based models from fibroblasts taken from a patient with LSFC, homozygous for the LRPPRC*354V allele, and from a control, homozygous for the LRPPRC*A354 allele. Specifically, for both of these fibroblast lines we generated hiPSC, hiPSC-derived cardiomyocytes (hiPSC-CMs) and hepatocyte-like cell (hiPSC-HLCs) lines, as well as the three germ layers. We observed that LRPPRC protein expression is reduced in all cell lines/layers derived from LSFC patient compared to control cells, with a reduction ranging from ∼70% in hiPSC-CMs to undetectable levels in hiPSC-HLC, reflecting tissue heterogeneity observed in patient tissues. We next performed exploratory analyses of these cell lines and observed that COX protein expression was reduced in all cell lines derived from LSFC patient compared to control cells. We also observed that mutant LRPPRC was associated with altered expression of key markers of endoplasmic reticulum stress response in hiPSC-HLCs but not in other cell types that were tested. While this demonstrates feasibility of the approach to experimentally study genotype-based differences that have tissue-specific impacts, this study will need to be extended to a larger number of patients and controls to not only validate the current observations but also to delve more deeply in the pathogenic mechanisms of LSFC.

9.
Stem Cell Rev Rep ; 20(3): 601-616, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38170319

RESUMEN

Acute liver failure (ALF) results from severe liver damage or end-stage liver disease. It is extremely fatal and causes serious health and economic burdens worldwide. Once ALF occurs, liver transplantation (LT) is the only definitive and recommended treatment; however, LT is limited by the scarcity of liver grafts. Consequently, the clinical use of bioartificial liver (BAL) has been proposed as a treatment strategy for ALF. Human primary hepatocytes are an ideal cell source for these methods. However, their high demand and superior viability prevent their widespread use. Hence, finding alternatives that meet the seed cell quality and quantity requirements is imperative. Stem cells with self-renewing, immunogenic, and differentiative capacities are potential cell sources. MSCs and its secretomes encompass a spectrum of beneficial properties, such as anti-inflammatory, immunomodulatory, anti-ROS (reactive oxygen species), anti-apoptotic, pro-metabolomic, anti-fibrogenesis, and pro-regenerative attributes. This review focused on the recent status and future directions of stem cell-based strategies in BAL for ALF. Additionally, we discussed the opportunities and challenges associated with promoting such strategies for clinical applications.


Asunto(s)
Fallo Hepático Agudo , Trasplante de Hígado , Hígado Artificial , Humanos , Hepatocitos , Fallo Hepático Agudo/terapia , Células Madre
10.
Antioxid Redox Signal ; 41(1-3): 110-137, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38183635

RESUMEN

Aims: Hepatic fibrosis is the pathological change during chronic liver diseases (CLD) that turns into cirrhosis if not reversed timely. Allogenic mesenchymal stem cell (MSC) therapy is an alternative to liver transplantation for CLD. However, poor engraftment of the transplanted MSCs limits their therapeutic efficacy. MSCs express chemokine receptors that regulate their physiology. We observed several-fold increased expressions of Cxcl3 and decreased expression of Mmp13 in the fibrotic liver. Therefore, we bioengineered MSCs with stable overexpression of Cxcr2 (CXCL3-cognate receptor) and Mmp13, collagenase (MSCGFPCxcr2-Mmp13). Results: The CXCL3/CXCR2 axis significantly increased migration through the activation of AKT/ERK/mTOR signaling. These bioengineered MSCs transdifferentiated into hepatocyte-like cells (MSCGFPCxcr2-Mmp13-HLCs) that endured the drug-/hepatotoxicant-induced toxicity by significantly increasing the antioxidants-Nrf2 and Sod2, while decreasing the apoptosis-Cyt C, Casp3, Casp9, and drug-metabolizing enzyme-Cyp1A1, Cyp1A2, Cyp2E1 markers. Therapeutic transplantation of MSCGFPCxcr2-Mmp13 abrogated AAP-/CCl4-induced hepatic fibrosis in mice by CXCR2-mediated targeted engraftment and MMP-13-mediated reduction in collagen. Mechanistically, induction of CXCL3/CXCR2 axis-activated mTOR-p70S6K signaling led to increased targeted engraftment and modulation of the oxidative stress by increasing the expression and activity of nuclear Nrf2 and SOD2 expression in the regenerated hepatic tissues. A marked change in the fate of transplanted MSCGFPCxcr2-Mmp13 toward hepatocyte lineage demonstrated by co-immunostaining of GFP/HNF4α along with reduced COL1α1 facilitated the regeneration of the fibrotic liver. Innovation and Conclusions: Our study suggests the therapeutic role of allogenic Cxcr2/Mmp13-bioengineered MSC transplantation decreases the hepatic oxidative stress as an effective translational therapy for hepatic fibrosis mitigation-mediated liver regeneration.


Asunto(s)
Cirrosis Hepática , Metaloproteinasa 13 de la Matriz , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Receptores de Interleucina-8B , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Ratones , Cirrosis Hepática/metabolismo , Cirrosis Hepática/terapia , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 13 de la Matriz/genética , Trasplante de Células Madre Mesenquimatosas/métodos , Serina-Treonina Quinasas TOR/metabolismo , Humanos , Masculino , Modelos Animales de Enfermedad
11.
J Mol Cell Biol ; 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996395

RESUMEN

Previous studies have shown that hepatocyte-like cells can be generated from fibroblasts using either lineage-specific transcription factors or chemical induction methods. However, these methods have their own deficiencies that restrict the therapeutic applications of such induced hepatocytes. In this study, we present a transgene-free, highly efficient chemical-induced direct reprogramming approach to generate hepatocyte-like cells from mouse embryonic fibroblasts (MEFs). Using a small molecule cocktail (SMC) as an inducer, MEFs can be directly reprogrammed into hepatocyte-like cells, bypassing pluripotent and immature hepatoblast intermediate stages. These chemical-induced hepatocyte-like cells (ciHeps) closely resemble mature primary hepatocytes in terms of morphology, biological behavior, gene expression patterns, marker expression levels, and hepatic functions. Furthermore, transplanted ciHeps can integrate into the liver, promote liver regeneration, and improve survival rates in mice with acute liver damage. ciHeps can also ameliorate liver fibrosis caused by chronic injuries and enhance liver function. Notably, ciHeps exhibit no tumorigenic potential either in vitro or in vivo. Mechanistically, SMC-induced mesenchymal-to-epithelial transition and suppression of SNAI1 contribute to the fate conversion of fibroblasts into ciHeps. These results indicate that this transgene-free, chemical-induced direct reprogramming technique has the potential to serve as a valuable means of producing alternative hepatocytes for both research and therapeutic purposes. Additionally, this method also sheds light on the direct reprogramming of other cell types under chemical induction.

12.
Prog Mol Biol Transl Sci ; 199: 379-395, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37678981

RESUMEN

Hepatocyte-like cells (HLCs) generated from human pluripotent stem cells (PSCs) exhibit hepatocytic properties in vitro; however, their engraftment and functionality in vivo remain unsatisfactory. Despite optimization of differentiation protocols, HLCs did not engraft in a mouse model of liver injury. In contrast, organ-derived hepatocytes reproducibly formed colonies in the liver injury mouse model. As an extension of the phenomenon observed in hematopoietic stem cells giving rise to colonies within the spleen, commonly referred to as "colony-forming units in spleen (CFU-s)", we hypothesize that "colony-forming units in liver (CFU-L)" serves as a reliable indicator of stemness, engraftment, and functionality of hepatocytes. The uniform expression of the randomly inactivated gene in a single colony, as reported by Sugahara et al. 2022, suggests that the colonies generated by isolated hepatocytes likely originate from a single cell. We, therefore, propose that CFU-L can be used to quantify the number of "hepatocytes that engraft and proliferate in vivo" as a quantitative assay for stem cells that utilize colony-forming ability, similar to that observed in hematopoietic stem cells.


Asunto(s)
Células Madre Hematopoyéticas , Células Madre Pluripotentes , Animales , Ratones , Humanos , Hígado , Bioensayo , Diferenciación Celular , Modelos Animales de Enfermedad
13.
Stem Cells ; 41(11): 1076-1088, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37616601

RESUMEN

Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) hold great promise for liver disease modeling, drug discovery, and drug toxicity screens. Yet, several hurdles still need to be overcome, including among others decrease in the cost of goods to generate HLCs and automation of the differentiation process. We here describe that the use of an automated liquid handling system results in highly reproducible HLC differentiation from hPSCs. This enabled us to screen 92 chemicals to replace expensive growth factors at each step of the differentiation protocol to reduce the cost of goods of the differentiation protocol by approximately 79%. In addition, we also evaluated several recombinant extracellular matrices to replace Matrigel. We demonstrated that differentiation of hPSCs on Laminin-521 using an optimized small molecule combination resulted in HLCs that were transcriptionally identical to HLCs generated using the growth factor combinations. In addition, the HLCs created using the optimized small molecule combination secreted similar amounts of albumin and urea, and relatively low concentrations of alfa-fetoprotein, displayed similar CYP3A4 functionality, and a similar drug toxicity susceptibility as HLCs generated with growth factor cocktails. The broad applicability of the new differentiation protocol was demonstrated for 4 different hPSC lines. This allowed the creation of a scalable, xeno-free, and cost-efficient hPSC-derived HLC culture, suitable for high throughput disease modeling and drug screenings, or even for the creation of HLCs for regenerative therapies.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Diferenciación Celular , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo
14.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37511351

RESUMEN

The development of regenerative medicine provides new options for the treatment of end-stage liver diseases. Stem cells, such as bone marrow mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells (iPSCs), are effective tools for tissue repair in regenerative medicine. iPSCs are an appropriate source of hepatocytes for the treatment of liver disease due to their unlimited multiplication capacity, their coverage of the entire range of genetics required to simulate human disease, and their evasion of ethical implications. iPSCs have the ability to gradually produce hepatocyte-like cells (HLCs) with homologous phenotypes and physiological functions. However, how to induce iPSCs to differentiate into HLCs efficiently and accurately is still a hot topic. This review describes the existing approaches for inducing the differentiation of iPSCs into HLCs, as well as some challenges faced, and summarizes various parameters for determining the quality and functionality of HLCs. Furthermore, the application of iPSCs for in vitro hepatoprotective drug screening and modeling of liver disease is discussed. In conclusion, iPSCs will be a dependable source of cells for stem-cell therapy to treat end-stage liver disease and are anticipated to facilitate individualized treatment for liver disease in the future.


Asunto(s)
Células Madre Pluripotentes Inducidas , Hepatopatías , Células Madre Pluripotentes , Humanos , Hepatocitos , Diferenciación Celular , Hepatopatías/terapia
15.
Bioact Mater ; 28: 112-131, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37250866

RESUMEN

Reactive oxygen species (ROS)-associated oxidative stress, inflammation storm, and massive hepatocyte necrosis are the typical manifestations of acute liver failure (ALF), therefore specific therapeutic interventions are essential for the devastating disease. Here, we developed a platform consisting of versatile biomimetic copper oxide nanozymes (Cu NZs)-loaded PLGA nanofibers (Cu NZs@PLGA nanofibers) and decellularized extracellular matrix (dECM) hydrogels for delivery of human adipose-derived mesenchymal stem/stromal cells-derived hepatocyte-like cells (hADMSCs-derived HLCs) (HLCs/Cu NZs@fiber/dECM). Cu NZs@PLGA nanofibers could conspicuously scavenge excessive ROS at the early stage of ALF, and reduce the massive accumulation of pro-inflammatory cytokines, herein efficiently preventing the deterioration of hepatocytes necrosis. Moreover, Cu NZs@PLGA nanofibers also exhibited a cytoprotection effect on the transplanted HLCs. Meanwhile, HLCs with hepatic-specific biofunctions and anti-inflammatory activity acted as a promising alternative cell source for ALF therapy. The dECM hydrogels further provided the desirable 3D environment and favorably improved the hepatic functions of HLCs. In addition, the pro-angiogenesis activity of Cu NZs@PLGA nanofibers also facilitated the integration of the whole implant with the host liver. Hence, HLCs/Cu NZs@fiber/dECM performed excellent synergistic therapeutic efficacy on ALF mice. This strategy using Cu NZs@PLGA nanofiber-reinforced dECM hydrogels for HLCs in situ delivery is a promising approach for ALF therapy and shows great potential for clinical translation.

16.
Stem Cell Res Ther ; 14(1): 94, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072803

RESUMEN

BACKGROUND: High-throughput pharmaco-toxicological testing frequently relies on the use of established liver-derived cell lines, such as HepG2 cells. However, these cells often display limited hepatic phenotype and features of neoplastic transformation that may bias the interpretation of the results. Alternate models based on primary cultures or differentiated pluripotent stem cells are costly to handle and difficult to implement in high-throughput screening platforms. Thus, cells without malignant traits, optimal differentiation pattern, producible in large and homogeneous amounts and with patient-specific phenotypes would be desirable. METHODS: We have designed and implemented a novel and robust approach to obtain hepatocytes from individuals by direct reprogramming, which is based on a combination of a single doxycycline-inducible polycistronic vector system expressing HNF4A, HNF1A and FOXA3, introduced in human fibroblasts previously transduced with human telomerase reverse transcriptase (hTERT). These cells can be maintained in fibroblast culture media, under standard cell culture conditions. RESULTS: Clonal hTERT-transduced human fibroblast cell lines can be expanded at least to 110 population doublings without signs of transformation or senescence. They can be easily differentiated at any cell passage number to hepatocyte-like cells with the simple addition of doxycycline to culture media. Acquisition of a hepatocyte phenotype is achieved in just 10 days and requires a simple and non-expensive cell culture media and standard 2D culture conditions. Hepatocytes reprogrammed from low and high passage hTERT-transduced fibroblasts display very similar transcriptomic profiles, biotransformation activities and show analogous pattern behavior in toxicometabolomic studies. Results indicate that this cell model outperforms HepG2 in toxicological screening. The procedure also allows generation of hepatocyte-like cells from patients with given pathological phenotypes. In fact, we succeeded in generating hepatocyte-like cells from a patient with alpha-1 antitrypsin deficiency, which recapitulated accumulation of intracellular alpha-1 antitrypsin polymers and deregulation of unfolded protein response and inflammatory networks. CONCLUSION: Our strategy allows the generation of an unlimited source of clonal, homogeneous, non-transformed induced hepatocyte-like cells, capable of performing typical hepatic functions and suitable for pharmaco-toxicological high-throughput testing. Moreover, as far as hepatocyte-like cells derived from fibroblasts isolated from patients suffering hepatic dysfunctions, retain the disease traits, as demonstrated for alpha-1-antitrypsin deficiency, this strategy can be applied to the study of other cases of anomalous hepatocyte functionality.


Asunto(s)
Doxiciclina , Hepatocitos , Humanos , Doxiciclina/farmacología , Hepatocitos/metabolismo , Hígado , Línea Celular , Diferenciación Celular/genética
17.
Front Genet ; 14: 1115831, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968612

RESUMEN

Introduction: Hemophilia A (HA) is the most common genetic bleeding disorder caused by mutations in the F8 gene encoding coagulation factor VIII (FVIII). As the second predominant pathogenic mutation in hemophilia A severe patients, F8 Intron one inversion (Inv1) completely splits the F8 gene into two parts and disrupts the F8 transcription, resulting in no FVIII protein production. The part which contains exon 2-exon 26 covers 98% of F8 coding region. Methods: We hypothesized that in situ genetic manipulation of F8 to add a promoter and exon one before the exon two could restore the F8 expression. The donor plasmid included human alpha 1-antitrypsin (hAAT) promoter, exon one and splicing donor site (SD) based on homology-mediated end joining (HMEJ) strategy was targeted addition in hemophilia A patient-derived induced pluripotent stem cell (HA-iPSCs) using CRISPR/Cas9. The iPSCs were differentiated into hepatocyte-like cells (HPLCs). Results: The hAAT promoter and exon one were targeted addition in HA-iPSCs with a high efficiency of 10.19% via HMEJ. The FVIII expression, secretion, and activity were detected in HPLCs derived from gene-targeted iPSCs. Discussion: Thus, we firstly rescued the 140 kb reversion mutation by gene addition of a 975 bp fragment in the HA-iPSCs with Inv1 mutation, providing a promising gene correction strategy for genetic disease with large sequence variants.

18.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982757

RESUMEN

Bone marrow-derived mesenchymal stem cells (BMSCs) can differentiate into hepatocyte-like cells (HLCs) to alleviate acute liver injury (ALI). Herpetfluorenone (HPF), as an active ingredient in the dried, mature seeds Herpetospermum caudigerum Wall, used in Tibetan medicine, has been proven to effectively alleviate ALI. Therefore, the purpose of this study was to determine whether HPF can promote the differentiation of BMSCs into HLCs and promote ALI recovery. Mouse BMSCs were isolated, and the BMSCs' differentiation into HLCs was induced by HPF and hepatocyte growth factor (HGF). Under the induction of HPF and HGF, the expression of hepatocellular specific markers and the accumulation of glycogen and lipids in the BMSCs increased, indicating that BMSCs successfully differentiated into HLCs. Then, the ALI mouse model was established, using carbon tetrachloride, followed by an intravenous injection of BMSCs. Then, only HPF was injected intraperitoneally, in order to verify the effect of HPF in vivo. In vivo imaging was used to detect the homing ability of HPF-BMSCs, and it was detected that HPF-BMSCs significantly increased the levels of serum AST, ALT and ALP in the liver of ALI mice, and alleviated liver cell necrosis, oxidative stress and liver pathology. In conclusion, HPF can promote the differentiation of BMSCs into HLCs and promote the recovery of ALI in mice.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Ratones , Animales , Trasplante de Células Madre Mesenquimatosas/métodos , Hígado/metabolismo , Hepatocitos/metabolismo , Diferenciación Celular , Células de la Médula Ósea
19.
Hepatol Res ; 53(7): 661-674, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36866738

RESUMEN

AIM: Hepatic zonation is a physiological feature of the liver, known to be key in the regulation of the metabolism of nutrients and xenobiotics and the biotransformation of numerous substances. However, the reproduction of this phenomenon remains challenging in vitro as only part of the processes involved in the orchestration and maintenance of zonation are fully understood. The recent advances in organ-on-chip technologies, which allow for the integration of multicellular 3D tissues in a dynamic microenvironment, could offer solutions for the reproduction of zonation within a single culture vessel. METHODS: An in-depth analysis of zonation-related mechanisms observed during the coculture of human-induced pluripotent stem cell (hiPSC)-derived carboxypeptidase M-positive liver progenitor cells and hiPSC-derived liver sinusoidal endothelial cells within a microfluidic biochip was carried out. RESULTS: Hepatic phenotypes were confirmed in terms of albumin secretion, glycogen storage, CYP450 activity, and expression of specific endothelial markers such as PECAM1, RAB5A, and CD109. Further characterization of the patterns observed in the comparison of the transcription factor motif activities, the transcriptomic signature, and the proteomic profile expressed at the inlet and the outlet of the microfluidic biochip confirmed the presence of zonation-like phenomena within the biochips. In particular, differences related to Wnt/ß-catenin, transforming growth factor-ß, mammalian target of rapamycin, hypoxia-inducible factor-1, and AMP-activated protein kinase signaling, to the metabolism of lipids, and cellular remolding were observed. CONCLUSIONS: The present study shows the interest in combining cocultures of hiPSC-derived cellular models and microfluidic technologies for reproducing in vitro complex mechanisms such as liver zonation and further incites the use of those solutions for accurate reproduction of in vivo situations.

20.
Gut Liver ; 17(5): 674-683, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36843422

RESUMEN

Acute liver failure (ALF) is a severe liver disease syndrome with rapid deterioration and high mortality. Liver transplantation is the most effective treatment, but the lack of donor livers and the high cost of transplantation limit its broad application. In recent years, there has been no breakthrough in the treatment of ALF, and the application of stem cells in the treatment of ALF is a crucial research field. Mesenchymal stem cells (MSCs) are widely used in disease treatment research due to their abundant sources, low immunogenicity, and no ethical restrictions. Although MSCs are effective for treating ALF, the application of MSCs to ALF needs to be further studied and optimized. In this review, we discuss the potential mechanisms of MSCs therapy for ALF, summarize some methods to enhance the efficacy of MSCs, and explore optimal approaches for MSC transplantation.


Asunto(s)
Fallo Hepático Agudo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Fallo Hepático Agudo/cirugía , Hígado , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA