RESUMEN
The inflammatory tumor microenvironment is a fertile niche accelerating prostate cancer (PCa). We have reported that heme-oxygenase (HO-1) had a strong anti-tumoral effect in PCa. We previously undertook an in-depth proteomics study to build the HO-1 interactome in PCa. In this work, we used a bioinformatics approach to address the biological significance of HO-1 interactors. Open-access PCa datasets were mined to address the clinical significance of the HO-1 interactome in human samples. HO-1 interactors were clustered into groups according to their expression profile in PCa patients. We focused on the myxovirus resistance gene (MX1) as: (1) it was significantly upregulated under HO-1 induction; (2) it was the most consistently downregulated gene in PCa vs. normal prostate; (3) its loss was associated with decreased relapse-free survival in PCa; and (4) there was a significant positive correlation between MX1 and HMOX1 in PCa patients. Further, MX1 was upregulated in response to endoplasmic reticulum stress (ERS), and this stress triggered apoptosis and autophagy in PCa cells. Strikingly, MX1 silencing reversed ERS. Altogether, we showcase MX1 as a novel HO-1 interactor and downstream target, associated with ERS in PCa and having a high impact in the clinical setting.
Asunto(s)
Biología Computacional/métodos , Hemo-Oxigenasa 1/metabolismo , Proteínas de Resistencia a Mixovirus/metabolismo , Neoplasias de la Próstata/metabolismo , Estudios de Casos y Controles , Proliferación Celular , Minería de Datos , Bases de Datos Genéticas , Estrés del Retículo Endoplásmico , Regulación Neoplásica de la Expresión Génica , Hemo-Oxigenasa 1/genética , Humanos , Masculino , Proteínas de Resistencia a Mixovirus/genética , Células PC-3 , Neoplasias de la Próstata/genética , Análisis de Supervivencia , Microambiente TumoralRESUMEN
Retinal ischemia-reperfusion (rI/R) generates an oxidative condition causing the death of neuronal cells. Epigallocatechin 3-gallate (EGCG) has antioxidant and anti-inflammatory properties. Nonetheless, its correlation with the pathway of nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) for the protection of the retina is unknown. We aimed to evaluate the neuroprotective efficacy of single-doses of EGCG in rI/R and its association with Nrf2/Ho-1 expression. In albino rabbits, rI/R was induced and single-doses of EGCG in saline (0-30 mg/kg) were intravenously administered to select an optimal EGCG concentration that protects from retina damage. To reach this goal, retinal structural changes, gliosis by glial fibrillary acidic protein (GFAP) immunostaining, and lipid peroxidation level by TBARS (thiobarbituric acid reactive substance) assay were determined. EGCG in a dose of 15 mg/kg (E15) presented the lowest levels of histological damage, gliosis, and oxidative stress in the studied groups. To determine the neuroprotective efficacy of E15 in a timeline (6, 24, and 48 h after rI/R), and its association with the Nrf2/HO-1 pathway, the following assays were done by immunofluorescence: apoptosis (TUNEL assay), necrosis (high-mobility group box-1; HMGB1), Nrf2, and HO-1. In addition, the Ho-1 mRNA (qPCR) and lipid peroxidation levels were evaluated. E15 showed a protective effect during the first 6 h, compared to 24 and 48 h after rI/R, as revealed by a decrease in the levels of all damage markers. Nuclear translocation Nrf2 and HO-1 staining were increased, including Ho-1 mRNA levels. In conclusion, a single dose of E15 decreases the death of neuronal cells induced by oxidative stress during the first 6 h after rI/R. This protective effect is associated with the nuclear translocation of Nrf2 and with an elevation of Ho-1 expression.
Asunto(s)
Antioxidantes/uso terapéutico , Catequina/análogos & derivados , Fármacos Neuroprotectores/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico , Vasos Retinianos/efectos de los fármacos , Animales , Antioxidantes/farmacología , Apoptosis , Catequina/farmacología , Catequina/uso terapéutico , Hemo Oxigenasa (Desciclizante)/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Peroxidación de Lípido , Masculino , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Conejos , Vasos Retinianos/metabolismo , Vasos Retinianos/patologíaRESUMEN
BACKGROUND: Prostate cancer (PCa) dissemination shows a tendency to develop in the bone, where heme oxygenase 1 (HO-1) plays a critical role in bone remodeling. Previously by LC/ESI-MSMS, we screened for HO-1 interacting proteins and identified annexin 2 (ANXA2). The aim of this study was to analyze the relevance of ANXA2/HO-1 in PCa and bone metastasis. METHODS: We assessed ANXA2 levels using a co-culture transwell system of PC3 cells (pre-treated or not with hemin, an HO-1 specific inducer) and the pre-osteoclastic Raw264.7 cell line. RESULTS: Under co-culture conditions, ANXA2 mRNA levels were significantly modulated in both cell lines. Immunofluorescence analysis unveiled a clear ANXA2 reduction in cell membrane immunostaining for Raw264.7 under the same conditions. This effect was supported by the detection of a decrease in Ca2+ concentration in the conditioned medium. HO-1 induction in tumor cells prevented both, the ANXA2 intracellular relocation and the decrease in Ca2+ concentration. Further, secretome analysis revealed urokinase (uPA) as a key player in the communication between osteoclast progenitors and PC3 cells. To assess the clinical significance of ANXA2/HO-1, we performed a bioinformatics analysis and identified that low expression of each gene strongly associated with poor prognosis in PCa regardless of the clinico-pathological parameters assessed. Further, these genes appear to behave in a dependent manner. CONCLUSIONS: ANXA2/HO-1 rises as a critical axis in PCa.
Asunto(s)
Anexina A2/metabolismo , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Hemo-Oxigenasa 1/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata/metabolismo , Microambiente Tumoral , Animales , Neoplasias Óseas/patología , Huesos/metabolismo , Huesos/patología , Humanos , Masculino , Ratones , Metástasis de la Neoplasia , Células PC-3 , Neoplasias de la Próstata/patología , Células RAW 264.7RESUMEN
Lupus nephritis (LN) is one of the most serious manifestations of systemic lupus erythematosus (SLE). Based on studies showing the potential role of heme oxygenase-1 (HO-1), an enzyme that catalyzes the degradation of heme and has anti-inflammatory properties in SLE development, we decided to explore HO-1 in LN. Accordingly, we evaluated HO-1 levels and function in circulating and infiltrating monocytes and neutrophils of LN patients. HO-1 levels were assessed in peripheral monocytes of LN patients and controls by flow cytometry and immunofluorescence microscopy. Phagocytosis and the production of reactive oxygen species (ROS) were evaluated to determine the effect of HO-1 in monocyte function. In addition, renal biopsies with proliferative LN were used to identify HO-1 in infiltrating cells and renal tissue by immunofluorescence and immunohistochemistry. Biopsies of healthy controls (HC) and patients who underwent nephrectomy were included as controls. Circulating pro-inflammatory monocytes and activated neutrophils were increased in LN patients. HO-1 levels were decreased in all subsets of monocytes and in activated neutrophils. LN monocytes showed increased phagocytosis and higher production of ROS than those of HC. When HO-1 was induced, phagocytosis and ROS levels became similar to those of HC. HO-1 was mostly expressed in renal tubular epithelial cells (RTEC). Renal tissue of LN patients showed lower levels of HO-1 than HC, whereas infiltrating immune cells of LN showed lower levels of HO-1 than biopsies of patients who had renal surgery. HO-1 is decreased in circulating monocytes and activated neutrophils of LN patients. HO-1 levels modulate the phagocytosis of LN monocytes and ROS production. HO-1 expression in RTEC might be an attempt of self-protection from inflammation.