Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 197: 110706, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31103890

RESUMEN

Catalase (CAT) and myeloperoxiase (MPO) are heme-containing enzymes that have attracted attention for their role in the etiology of numerous respiratory disorders such as cystic fibrosis, bronchial asthma, and acute hypoxemic respiratory failure. However, information regarding the interrelationship and competition between the two enzymes, free iron accumulation, and decreased levels of non-enzymatic antioxidants at sites of inflammation is still lacking. Myeloperoxidase catalyzes the generation of hypochlorous acid (HOCl) from the reaction of hydrogen peroxide (H2O2) and chloride (Cl-). Self-generated HOCl has recently been proposed to auto-inhibit MPO through a mechanism that involves MPO heme destruction. Here, we investigate the interplay of MPO, HOCl, and CAT during catalysis, and explore the crucial role of MPO inhibitors and HOCl scavengers in protecting the catalytic site from protein modification of both enzymes against oxidative damage mediated by HOCl. We showed that CAT not only competes with MPO for H2O2 but also scavenges HOCl. The protective role provided by CAT versus the damaging effect provided by HOCl depends in part on the ratio between MPO/CAT and the affinity of the enzymes towards H2O2 versus HOCl. The severity of such damaging effects mainly depends on the ratio of HOCl to enzyme heme content. In addition to its effect in mediating protein modification and aggregation, HOCl oxidatively destroys the catalytic sites of the enzymes, which contain porphyrin rings and iron. Thus, modulation of MPO/CAT activities may be a fundamental feature of catalysis, and functions to down-regulate HOCl synthesis and prevent hemoprotein heme destruction and/or protein modification.


Asunto(s)
Catalasa/química , Cloruros/química , Peróxido de Hidrógeno/química , Ácido Hipocloroso/química , Estrés Oxidativo , Peroxidasa/química , Animales , Bovinos , Humanos
2.
Artículo en Inglés | MEDLINE | ID: mdl-26710175

RESUMEN

Here, the effect of benzene on hemoglobin structure, stability and heme prosthetic group integrity was studied by different methods. These included UV-vis absorption spectrophotometry, normal and synchronous fluorescence techniques, and differential scanning calorimetry (DSC). Our results indicated that benzene has high hemolytic potential even at low concentrations. The UV-vis spectroscopic results demonstrated that benzene altered both the globin chain and the heme prosthetic group of hemoglobin increasing met- and deoxy-Hb, while decreasing oxy-Hb. However, with increasing benzene the concentration of all species decreased due to heme destruction. The spectrophotometric results show that benzene has a high potential for penetrating the hydrophobic pocket of hemoglobin. These results were consistent with the molecular docking simulation results of benzene-hHb. Aggregation and thermal denaturation studies show that the increased benzene concentration induced hemoglobin aggregation with a decrease in stability, which is consistent with the DSC results. Conventional fluorescence spectroscopy revealed that the heme degradation species were produced in the presence of benzene. The results of constant wavelength synchronous fluorescence spectroscopy (CWSFS) indicated that at least five heme-degraded species were produced. Together, our results indicated that benzene has adverse effects on hemoglobin structure and function, and heme degradation.


Asunto(s)
Benceno/efectos adversos , Contaminantes Ambientales/efectos adversos , Hemo/química , Hemoglobinas/química , Estabilidad Proteica/efectos de los fármacos , Hemo/metabolismo , Hemoglobinas/metabolismo , Hemólisis/efectos de los fármacos , Humanos , Modelos Moleculares , Oxígeno/metabolismo , Agregado de Proteínas/efectos de los fármacos , Conformación Proteica/efectos de los fármacos
3.
J Inorg Biochem ; 140: 245-54, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25193127

RESUMEN

Myeloperoxidase (MPO), lactoperoxidase (LPO) and eosinophil peroxidase (EPO) play a central role in oxidative damage in inflammatory disorders by utilizing hydrogen peroxide and halides/pseudo halides to generate the corresponding hypohalous acid. The catalytic sites of these enzymes contain a covalently modified heme group, which is tethered to the polypeptide chain at two ester linkages via the methyl group (MPO, EPO and LPO) and one sulfonium bond via the vinyl group (MPO only). Covalent cross-linking of the catalytic site heme to the polypeptide chain in peroxidases is thought to play a protective role, since it renders the heme moiety less susceptible to the oxidants generated by these enzymes. Mass-spectrometric analysis revealed the following possible pathways by which hypochlorous acid (HOCl) disrupts the heme-protein cross-linking: (1) the methyl-ester bond is cleaved to form an alcohol; (2) the alcohol group undergoes an oxygen elimination reaction via the formation of an aldehyde intermediate or undergoes a demethylation reaction to lose the terminal CH2 group; and (3) the oxidative cleavage of the vinyl-sulfonium linkage. Once the heme moiety is released it undergoes cleavage at the carbon-methyne bridge either along the δ-ß or a α-γ axis to form different pyrrole derivatives. These results indicate that covalent cross-linking is not enough to protect the enzymes from HOCl mediated heme destruction and free iron release. Thus, the interactions of mammalian peroxidases with HOCl modulates their activity and sets a stage for initiation of the Fenton reaction, further perpetuating oxidative damage at sites of inflammation.


Asunto(s)
Hemo/química , Ácido Hipocloroso/química , Péptidos/química , Peroxidasas/química , Biocatálisis , Cromatografía Liquida , Humanos , Estrés Oxidativo , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA