Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 946: 174402, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38960171

RESUMEN

Sulfate-reducing bacteria (SRB) are used in the remediation of mine pollution; however, the mechanism of stabilizing multiple heavy metal(loid)s by the SRB consortium under low oxygen conditions needs further study. Indigenous microflora were extracted from non-ferrous metal-contaminated soil co-inoculated with enriched SRB consortium and assembled as the HQ23 consortium. The presence of Desulfovibrio (SRB) in HQ23 was confirmed by 16S rRNA sequencing and qPCR. The effects of culture media, dissolved oxygen (DO), SO42¯, and pH on the HQ23 growth rate, and the SO42¯-reducing activity were examined. Data indicates that the HQ23 sustained SRB function under low DO conditions (3.67 ± 0.1 mg/L), but the SRB activity was inhibited at high DO content (5.75 ± 0.39 mg/L). The HQ23 can grow from pH 5 to pH 9 and can decrease mobile or bioavailable Cr, Cu, and Zn concentrations in contaminated soil samples. FTIR revealed that Cu and Cr adsorbed to similar binding sites on bacteria, likely decreasing bacterial Cu toxicity. Increased abundances of DSV (marker for Desulfovibrio) and nifH (N-fixation) genes were observed, as well as an accumulation of nitrate-N content in soils suggesting that HQ23 stimulates the biological N-fixation in soils. This study strongly supports the future application of SRB for the bioremediation of heavy metal-polluted sites.


Asunto(s)
Metales Pesados , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Metales Pesados/metabolismo , Fijación del Nitrógeno , Sulfatos/metabolismo , Suelo/química , Biodegradación Ambiental , Consorcios Microbianos , Desulfovibrio/metabolismo , ARN Ribosómico 16S
2.
Waste Manag ; 181: 44-56, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38583272

RESUMEN

Phosphate tailings (PT) was used to reduce the release of heavy metals (HMs) during pyrolysis and the leachable rate of residual HMs, and simultaneously improve the bioavailability of phosphorus in the sludge-based biochar. The concentration of heavy metals and the fractions determined by BCR method was used to investigate the release and the transformation of Zn, Pb, Mn, Ni and Cu during pyrolysis involved with the effects of temperature and the addition of PT. The respective pyrolysis experiments shows that the release of Zn and Pb increases with temperature for both sewage sludge (SS) and PT, and the bioavailable fractions (F1 + F2) of Mn, Ni, and Cu increases with temperature for PT. During co-pyrolysis, blended samples released lower quantities of Zn and Pb and presented lower bioavailability of HMs than the individual SS or PT. A synergistic effect of co-pyrolysis was evident for volatile Zn and Pb. The decomposition of CaMg (CO3)2 from PT produced CaO, by which the volatile ZnCl2 and PbCl2 were transformed into ZnO and PbO with less volatility and higher reactivity with SiO2 and Al2O3 than the chlorides. Then SiO2 and Al2O3 from SS acted as the final stabilizer to immobilize the oxides. The final product combined with SiO2 and Al2O3, such as ZnSiO4 and ZnAl2O4, were detected. The addition of PT also introduced more Ca and P into sludge to produce biochar with higher concentration of apatite phosphorus with higher bioavailability.


Asunto(s)
Metales Pesados , Fosfatos , Fósforo , Pirólisis , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Metales Pesados/química , Metales Pesados/análisis , Fósforo/química , Fosfatos/química , Carbón Orgánico/química
3.
Waste Manag ; 174: 96-105, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38039939

RESUMEN

Hydrothermal carbonization is an efficient technique for the disposal of livestock manure, enabling its harmless treatment, quantity reduction, and resourceful utilization. Co-hydrothermal of modified materials facilitates the production of more valuable carbonaceous materials. However, further exploration is needed to understand their potential impact on the environmental risks associated with livestock manure disposal and the application of products derived from it. Therefore, the carbonization degree, heavy metals stabilization, and phosphorus retention during the hydrothermal treatment of swine manure were systematically investigated in this study under the influence of in-situ formed MgFe2O4. The results revealed that the in-situ formation of MgFe2O4 improved the dehydration and decarboxylation of organic components in swine manure, thereby improving its carbonization degree. Furthermore, both hydrothermal carbonization and MgFe2O4 modified hydrothermal carbonization resulted in an enhanced stabilization of heavy metals, leading to a significant reduction in their soluble/exchangeable fraction and reducible fraction. Phosphorus was predominantly retained in the hydrochars, with the highest retention rate reaching 88%, attributed to the significant decrease in soluble and exchangeable phosphorus fractions facilitated by the in-situ formation of MgFe2O4. Moreover, MgFe2O4 modified hydrochars exhibited remarkable adsorption capacity for Pb(II) and Cu(II) without any leaching of heavy metals. Overall, the findings indicated that the in-situ formation of MgFe2O4 positively influenced the hydrothermal of swine manure, improving certain economic benefits in its practical application.


Asunto(s)
Metales Pesados , Fósforo , Animales , Porcinos , Carbono , Estiércol
4.
Environ Sci Pollut Res Int ; 30(60): 125585-125595, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38006480

RESUMEN

Municipal solid waste incinerator (MSWI) fly ash poses intricate compositional challenges and potential environmental hazards. Effective management of such hazardous waste is imperative to mitigate the release of toxic compounds into the environment. Solidification/stabilization (S/S) processes have emerged as a viable strategy to transform MSWI fly ash from incineration waste into a safer and more environmentally benign material. This study aims to comprehensively investigate the potential of utilizing cow bone waste to stabilize heavy metals, focusing on Pb, within municipal solid waste incineration fly ash. Experimental investigations encompassed cow bone-to-fly ash weight ratios ranging from 0.0 (control group) to 7:3, a settling time of 2 h, and a liquid-to-solid (L/S) ratio of 1.0 mL/g. Cow bone waste exhibited pronounced efficacy, particularly within the short settling time, yielding a remarkable Pb removal efficiency of up to 99% at a cow bone waste dose of merely 2% and an L/S ratio of 1.0 mL/g. Concurrently, other heavy metals such as Cd, Cu, and Zn were effectively stabilized with a cow bone waste dose of 1.5% during the same 2-h settling period. The results underscore the pivotal roles of ash/bone ratio and settling time in augmenting Pb stabilization in MSWI fly ash. The application of cow bone waste is anticipated to offer a cost-effective and environmentally sound approach, aligning with sustainable waste management principles.


Asunto(s)
Metales Pesados , Eliminación de Residuos , Ceniza del Carbón , Residuos Sólidos , Eliminación de Residuos/métodos , Material Particulado , Plomo , Carbono , Incineración , Metales Pesados/análisis
5.
Water Res ; 239: 120022, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37172375

RESUMEN

The development of magnetic adsorbents with high capacity to capture heavy metals has been the subject of intense research, but the process usually involves costive synthesis steps. Here, we propose a green approach to obtaining a magnetic biohybrid through in situ grown anaerobic granular sludge (AGS) with the help of magnetite, constituting a promising adsorbent for sequestration and immobilization of Pb in aqueous solutions and soils. The resultant magnetite-embedded AGS (M-AGS) was not only capable of promoting methane production but also conducive to Pb adsorption because of the large surface area and abundant function groups. The uptake of Pb on M-AGS followed the pseudo-second order, having a maximum adsorption capacity of 197.8 mg gDS-1 at pH 5.0, larger than 159.7, 170.3, and 178.1 mg gDS-1 in relation to AGS, F-AGS (ferrihydrite-mediated), and H-AGS (hematite-mediated), respectively. Mechanistic investigations showed that Pb binding to M-AGS proceeds via surface complexation, mineral precipitation, and lattice replacement, which promotes heavy metal capture and stabilization. This was evident from the increased proportion of structural Pb sequestrated from the aqueous solution and the enhanced percentage of the residual fraction of Pb extracted from the contaminated soils.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Plomo , Anaerobiosis , Óxido Ferrosoférrico , Metales Pesados/química , Adsorción , Suelo , Fenómenos Magnéticos
6.
Environ Monit Assess ; 195(6): 711, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37219632

RESUMEN

Remedial action for heavy metal-contaminated soils is imperative for preventing heavy metal leachability and minimizing environmental risks. This study evaluated the use of limekiln dust (LKD) as a heavy metal stabilization agent for Ghanaian gold mine oxide ore tailing material. Heavy metal-laden tailing material (Fe, Ni, Cu, Cd, and Hg) was collected from a tailing dam site in Ghana. Stabilization was done using acid neutralization capacity (ANC) and citric acid test (CAT) while all chemical characterization was done using X-ray fluorescence (XRF) spectroscopy. Various physicochemical parameters including pH, EC, and temperature were also measured. The contaminated soils were amended with LKD in doses of 5, 10, 15, and 20 wt.%. The results revealed that the contaminated soils had concentrations of heavy metals above FAO/WHO stipulated limits of 350, 35, 36, 0.8, and 0.3 mg/kg for Fe, Ni, Cu, Cd, and Hg, respectively. After 28 days of curing, 20 wt.% of LKD was found to be appropriate for the remediation of the mine tailings of all the heavy metals studied except Cd. Ten percent of the LKD was noticed to be enough in remedying soil contaminated with Cd since the Cd's concentration reduced from 9.1 to 0.0 mg/kg with a stabilizing efficiency of 100% and a leaching factor of 0.0. Therefore, remediation of contaminated soils of Fe, Cu, Ni, Cd, and Hg with LKD is safe and environmentally friendly.


Asunto(s)
Mercurio , Metales Pesados , Oro , Ghana , Cadmio , Monitoreo del Ambiente , Polvo , Óxidos , Suelo
7.
J Environ Manage ; 334: 117502, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36796196

RESUMEN

Proper treatment of heavy metal-contaminated dredged sediment (DS) is crucial to avoid secondary pollution. Effective and sustainable technologies are desired for the treatment of Zn- and Cu-contaminated DS. Due to the advantages of low energy consumption and time saving, co-pyrolysis technology was innovatively applied to treat Cu- and Zn-polluted DS in this study, and the effects of the co-pyrolysis conditions on Cu and Zn stabilization efficiencies, potential stabilization mechanisms, and the possibility for resource utilization of co-pyrolysis product were also investigated. The results showed that pine sawdust is an appropriate co-pyrolysis biomass for the stabilization of Cu and Zn based on the leaching toxicity analysis. The ecological risks of Cu and Zn in DS were reduced after co-pyrolysis treatment. The total concentrations of Zn and Cu in co-pyrolysis products were decreased by 5.87%-53.45% and 8.61%-57.45% of that in DS before co-pyrolysis. However, the total concentrations of Zn and Cu in DS remained basically unchanged after co-pyrolysis, which indicating the decreases in total concentrations of Zn and Cu in co-pyrolysis products were mainly related to dilution effect. Fraction analysis indicated that co-pyrolysis treatment contributed to transforming weakly bound Cu and Zn into stable fractions. The co-pyrolysis temperature and mass ratio of pine sawdust/DS had a greater influence than co-pyrolysis time on the fraction transformation of Cu and Zn. The leaching toxicity of Zn and Cu from the co-pyrolysis products was eliminated when the co-pyrolysis temperature reached 600 and 800 °C, respectively. Analysis of the X-ray photoelectron spectroscopy and X-ray diffraction results demonstrated that co-pyrolysis treatment could transform mobile Cu and Zn in DS into metal oxides, metal sulfides, phosphate compounds, etc. Batch adsorption procedures suggested that the co-pyrolysis product possessed a high adsorption capacity for Cd (95.70 mg/g at 318 K). The formation of CdCO3 precipitates and the complexation effects of oxygen-containing functional groups were the principal adsorption mechanisms of the co-pyrolysis product. Overall, this study provides new insights into sustainable disposal and resource utilization for heavy metal-contaminated DS.


Asunto(s)
Metales Pesados , Pinus , Cobre/química , Cadmio , Zinc/química , Adsorción , Pirólisis , Metales Pesados/química
8.
J Environ Manage ; 326(Pt B): 116635, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36399807

RESUMEN

Sludge pyrolysis has become an important method of sludge recycling. Stabilizing heavy metals in sludge is key to sludge recycling. Currently, research on the co-pyrolysis of sludge and industrial waste is limited. This study aims to explore the impact and mechanism of the co-pyrolysis of sludge and CaSiO3 (the main component of slag) and to achieve the concept of "treating waste with waste". To this end, we added different proportions of CaSiO3 (0%, 3%, 6%, 9%, 12%, and 15%) for the co-pyrolysis with sludge, and varied the pyrolysis temperatures (300, 400, 500, 600, and 700 °C) and retention times (15, 30, 60, and 120 min) to study heavy-metal stabilization in sludge. Consequently, the optimum dosage of CaSiO3 required for the immobilization of different heavy metals was 9% (Cu, Zn, Pb, and Cr) and 15% (Ni). The contents of Cu, Zn, Pb, Cr, and Ni in the stable state (oxidized and residual states) were 92.73%, 79.23%, 99.55%, 92.43% and 90.33% respectively. At a pyrolysis temperature of 700 °C, the steady-state proportions of Cr, Pb, and Zn were 88.12%, 90.21%, and 77.21%, respectively. At a pyrolysis temperature of 400 °C, the stable-Cu and -Ni contents were 97.21% and 99.43%, respectively. The optimal dwelling time was 15 min. The results showed that the CaSiO3 addition weakened the O-H stretching vibration peak intensity, promoted the formation of aromatic and epoxy ring structures, and enhanced the heavy-metal immobilization. Furthermore, the CaSiO3 decomposition during co-pyrolysis produced SiO2, CaO, and Ca(OH)2, which helped stabilize heavy metals.


Asunto(s)
Metales Pesados , Pirólisis , Aguas del Alcantarillado/química , Plomo , Dióxido de Silicio , Carbón Orgánico/química , Metales Pesados/química
9.
Huan Jing Ke Xue ; 43(11): 5205-5213, 2022 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-36437092

RESUMEN

Although biochar has been widely used in the remediation of heavy metal pollution in acidic and neutral soils, less attention has been paid to whether biochar will alter its structural properties and the ability to retain heavy metals after different degrees of aging in alkaline soils. In this study, two artificial accelerated aging methods (freeze-thaw cycle and dry-wet cycle) and a short-term natural aging method were used to simulate the aging process of biochar prepared from corn stalk. We investigated the changes in the soil pH and bioavailability, total content, and transformation of Cd2+ before and after aging treatments. Biochar was separated from the soil for characterization to explore the effect of aging on the passivation of Cd2+ by biochar in the alkaline soil of the mining area. The results showed that adding biochar to alkaline soil in the Bayan Obo mining area had no significant liming effect, and pH decreased after the freeze-thaw and dry-wet accelerated aging treatments. Compared with that in the control, the CaCl2-extractable contents of Cd2+ decreased by 19.32%-30.67%, and the total contents of Cd2+ decreased by 5.02%-7.18%. Aging did not significantly change the transformation of Cd2+ but reduced the distribution of acid-soluble and reducible fractions, indicating that biochar could immobilize Cd2+ for a long time after aging, which was related to the increase in oxygen-containing functional groups and the pore structure of biochar. These results are important for evaluating its long-term application prospects in the mining environment.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo/química , Cadmio/análisis , Contaminantes del Suelo/análisis , Carbón Orgánico/química , Metales Pesados/análisis
10.
J Hazard Mater ; 429: 128298, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35066224

RESUMEN

In this study, laboratory-scale experiments were conducted to investigate the feasibility of the combined use of calcium peroxide and hydroxyapatite (CaO2/HAP) for simultaneous black-odor sediment remediation and heavy metal stabilization. The ecotoxicological effects of remediated sediment were also evaluated based on biological toxicity. Results showed that CaO2/HAP effectively eliminated the black-odor and simultaneously stabilized heavy metals in the sediment. Under the optimal dosage ratio of CaO2/HAP (1:2), the acid volatile sulfides decreased to approximately 20 mg/kg (dry weight, dw) and oxidation-reduction potential increased from - 165 mV to approximately - 90 mV. The leaching of heavy metals meets the strictest standards (Level I) of the "Technical Specification for Output Disposal of Contaminated Sediment Treatment Plant of River and Lake" (SZDB/Z 236-2017). The indigenous microbial community succession occurred (p < 0.01), Proteobacteria and Firmicutes accounting for 75.54% and 20.19%, respectively, were the predominant bacteria in the remediated sediment. Additionally, CaO2/HAP remediated sediments were safer and more environmentally friendly than raw sediments, and were not biotoxic to the benthic environment (p < 0.01). This study provides new insights into the combined use of the beneficial amendments remediating heavy metal-contaminated black-odor river sediment.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Durapatita , Sedimentos Geológicos , Metales Pesados/análisis , Metales Pesados/toxicidad , Odorantes , Peróxidos , Ríos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
11.
J Environ Manage ; 305: 114292, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34998065

RESUMEN

The presence of unstable heavy metals in sewage sludge (SS) restricts its resource utilization. In this study, Ca(H2PO4)2 and SS were co-pyrolyzed to produce biochar, which contained relatively stable heavy metals. X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, and inductively coupled plasma atomic emission techniques were used to analyze the physical and chemical properties and heavy metal content of the biochar. The results indicated that co-pyrolysis of SS with Ca(H2PO4)2 resulted in the production of more stable heavy metals in the SS. The optimal co-pyrolysis conditions were a blended ratio of 15% Ca(H2PO4)2, 650 °C final temperature, 15 °C min-1, and 60 min retention time. The potential stabilization mechanisms of heavy metals were as follows: (1) organic decomposition and moisture (sourced from Ca(H2PO4)2 decomposition) evaporation resulted in greater biochar surface porosity; (2) phosphorous substances were complexed with heavy metals to form metal phosphates; and (3) the mixture reactions among inorganic substances, pyrolysis products of organics, and heavy metals resulted in the formation of highly aromatic metallic compounds. Additionally, the potential environmental risks posed by the heavy metals decreased from 65.73 (in SS) to 4.39 (in biochar derived from co-pyrolysis of SS and 15% of Ca(H2PO4)2). This study reports on a good approach for the disposal of SS and the reduction of its environmental risk.


Asunto(s)
Metales Pesados , Pirólisis , Carbón Orgánico , Fósforo , Aguas del Alcantarillado , Temperatura
12.
Sci Total Environ ; 783: 146983, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34088139

RESUMEN

One-step synthesis of multifunctional materials using biomass waste for environmental remediation is a current research hotspot. In this study, a novel P-enriched hydrochar was obtained by co-hydrothermal treatment of biomass (bamboo or hickory) with concentrated H3PO4 (biomass: H3PO4 = 1:4) at 200 °C for 7 h. The characteristics of the P-enriched hydrochar were determined and its effect on the stabilization of Pb in soils was investigated. Compared to pristine hydrochar, the weight yield of the P-enriched hydrochar was greater (by over 2 times). This was due to the enrichment of P (over 20% by weight), as the C, N, and H weight content was reduced. Moreover, the aromaticity, thermal stability, and surface functionality of P-enriched hydrochar were all higher than that of pristine hydrochar. Addition of the pristine hydrochar to a simulated 1300 mg·kg-1 Pb-contaminated soil at 3% (w/w) resulted in a 20%-40% reduction in leached Pb only after 4 weeks, compared to the control without hydrochar amendment. However, addition of the P-enriched hydrochar to the spiked Pb-contaminated soil reduced Pb leaching by about 60% after only 1 week and about 90% after 3 weeks. Besides, using a real Pb-contaminated soil (149,000 mg·kg-1 Pb), P-enriched hydrochar addition at 5% (w/w) resulted in a 100% decrease in Pb leaching in the first week and maintained leached Pb levels at <2 mg L-1, meeting U.S.-E.P.A. standards. Thus, P-enriched hydrochar stabilized Pb in both simulated and real Pb-contaminated soil quickly and efficiently. Hence, the potential of one-step co-hydrothermal carbonization of biomass with H3PO4 to produce a novel and sustainable P-enriched hydrochar with properties suitable for environmental remediation of cationic metals.

13.
Environ Sci Pollut Res Int ; 28(35): 49014-49031, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33929668

RESUMEN

Stabilized/solidified hazardous wastes may lose their structural integrity and stability when exposed to long-term extreme weather conditions, such as repeated wetting-drying and freezing-thawing (F-T). This situation causes wastes to become environmentally risky again even if they are stabilized and solidified. In this study, the effects of F-T cycles on the strength and pollutant leachability of stabilization/solidification (S/S) products of zinc extraction residue (ZER) stabilized/solidified by Portland cement (PC), fly ash (FA), and alkaline phosphate (AP) were comprehensively investigated. S/S efficiency and F-T resistance of the samples were determined by unconfined compressive strength (UCS), and leaching tests widely applied in the USA (TCLP), European Union (EN-12457/1-4 2020), and Turkey (TS-EN 12457/4). In addition, X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses and visual inspection were performed to examine the variations in mineralogical and morphological structures. S/S efficiency and F-T resistance changed depending on the type and amount of S/S reagent used and decreased in the order of PC+AP>PC>>FA. All applied S/S procedures, except for 10% PC addition, were found to be suitable for the S/S of ZER from the viewpoint of the achievement of the minimum required strength and pollutant leachability. F-T events did not change the mineralogical structures of the S/S products, but significantly reduced the UCS value by causing structural deformation. The pollutant concentrations released from the samples that lost their monolithic structure by crumbling after certain cycle increased with the increasing F-T cycle, causing a change in the storage criteria of the samples. Therefore, it is important to consider and apply the F-T cycle as a standard test in addition to the existing leaching and strength tests for S/S products of the wastes in terms of minimizing environmental risks.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Contaminantes del Suelo , Ceniza del Carbón , Materiales de Construcción , Congelación , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis
14.
Environ Pollut ; 268(Pt A): 115846, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33143976

RESUMEN

Natural aging alters the surface physicochemical properties of biochars, which can affect the retention of heavy metals. This work investigated the effect of biochar aging on stabilization of heavy metals (Cd and Ni) and soil enzyme activities simulated with laboratory wet-dry (WD) and freeze-thaw (FT) cycling. A wheat straw (WS) biochar and a corn straw (CS) biochar were subjected to 30 WD or FT cycles, and Cd- and Ni-contaminated alkaline soils amended with the two fresh biochars (at 5% w/w) were subjected to 30-day constant moisture incubation and 30 WD or FT cycles. WD and FT aging caused slight reduction in the pH of the biochars, significant increases in their O contents and surface areas, and formation of new carbonate minerals. WS biochar was more effective than CS biochar at reducing the phytoavailable Cd in the soil, with reduction of 12.1%, 14.6%, and 12.9% under constant moisture incubation, WD aging, and FT aging, respectively. Reduction in phytoavailability of Ni by the addition of biochars was observed only under WD aging, by 17.0% and 18.5% in the presence of WS and CS biochars, respectively. Biochar amendment also reduced the distribution of Cd in the acid soluble and reducible fractions in all aging regimes. The addition of biochars decreased catalase activity in almost all aging regimes and invertase activity under FT aging, but increased urease activity under FT aging. Comparison of the enzyme activities in the soils amended with biochars under constant moisture and accelerated aging conditions indicates WD aging significantly decreased the activities of catalase, invertase, and urease in all treatments, while FT aging significantly increased urease activity in all treatments. These findings suggest that biochars can stabilize Cd in alkaline soils under changing environmental conditions, although the activities of some soil enzymes could be negatively impacted.


Asunto(s)
Contaminantes del Suelo , Suelo , Cadmio , Carbón Orgánico , Contaminantes del Suelo/análisis
15.
Environ Sci Pollut Res Int ; 27(24): 30323-30332, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32458305

RESUMEN

The safe handling of heavy metals and antibiotics during waste disposal has attracted wide attention. In the present study, hydrothermally treated sewage sludge was used for co-pyrolysis with different concentration ratios of pig manure at 600 °C for heavy metal immobilization and antibiotic removal. Heavy metals (except Cd) were mainly retained in the biochar samples due to a high degree of decomposition characteristic of organic matter. Pyrolysis significantly immobilized the heavy metals via converting unstable F1 + F2 + F3 fractions (acid-soluble fraction + reducible fraction + oxidizable fraction) to stable F4 fraction (residual fraction), and more pig manure addition led to improved immobilization performance. After co-pyrolysis, the potential environmental risk of feedstocks reduced significantly and the addition of 50 wt.% of pig manure gave a minimum potential ecological risk index of 10.36 with a low risk of contamination. In addition, six types of antibiotics in feedstocks were decomposed completely during pyrolysis. The co-pyrolysis process showed numerous advantages in the synthetic treatment of sewage sludge and pig manure by reducing the heavy metal toxicity and antibiotic levels.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Animales , Antibacterianos , Carbón Orgánico , Estiércol , Pirólisis , Porcinos
16.
Molecules ; 25(7)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244753

RESUMEN

A greenhouse pot trial was conducted to investigate the effect of organic amendments combined with triple superphosphate on the bioavailability of heavy metals (HMs), Amorpha fruticosa growth and metal uptake from Pb-Zn mine tailings. Cattle manure compost (CMC), spent mushroom compost (SMC) and agricultural field soil (AFS) were applied to tailings at 5%, 10%, 20% and 30% w/w ratio, whereas sewage sludge (SS) and wood biochar (WB) were mixed at 2.5%, 5%, 10% and 20% w/w ratio. Triple superphosphate (TSP) was added to all the treatments at 4:1 (molar ratio). Amendments efficiently decreased DTPA-extracted Pb, Zn, Cd and Cu in treatments. Chlorophyll contents and shoot and root dry biomass significantly (p< 0.05) increased in the treatments of CMC (except T4 for chlorophyll b) and SMC, whereas treatments of SS (except T1 for chlorophyll a and b), WB and AFS (except T4 for chlorophyll a and b) did not show positive effects as compared to CK1. Bioconcentration factor (BCF) and translocation factor (TF) values in plant tissues were below 1 for most treatments. In amended treatments, soluble protein content increased, phenylalanine ammonialyase (PAL) and polyphenol oxidase (PPO) decreased, and catalase (CAT) activity showed varied results as compared to CK1 and CK2. Results suggested that A. fruticosa can be a potential metal phytostabilizer and use of CMC or SMC in combination with TSP are more effective than other combinations for the in situ stabilization of Pb-Zn mine tailings.


Asunto(s)
Difosfatos/química , Fabaceae/química , Plomo/química , Zinc/química , Biodegradación Ambiental , Biomasa , Fenómenos Químicos , Clorofila/química , Concentración de Iones de Hidrógeno , Metales Pesados , Procesos Fotoquímicos
17.
Waste Manag ; 105: 289-298, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32092534

RESUMEN

A novel heavy metal chelating agent, dithiocarboxylate-functionalized polyaminoamide dendrimer (PAMAM-0G-DTC), was evaluated for the stabilization of heavy metals from municipal solids waste incineration (MSWI) fly ash. PAMAM-0G-DTC achieved overall stabilization performance at a lower dosage (3% w/w) and a wider pH range (2-13) compared to conventional chelating agents such as sodium dimethyl dithiocarbamate (SDD) and dithiocarboxylate-functionalized tetraethylenepentamine (TEPA-DTC). The leaching toxicity of Pb and Cd in the MSWI fly ash by PAMAM-0G-DTC stabilization met the landfill requirements but could not be achieved by SDD and TEPA-DTC even at a 10 wt% concentration. Sequential chemical extraction of fly ash before and after stabilization shows that PAMAM-0G-DTC can be combined with active heavy metals in water-soluble, interchangeable, and carbonate states to form more stable heavy metals in organic and residual states. Mechanistic studies show that multiple PAMAM-0G-DTC molecules can combine with multiple heavy metals to form three-dimensional network-like super-molecular compounds with an infinite extension of space size. This makes the heavy metals more stable and embedded in the network-like super-molecular structure, thus minimizing the potential risk of leaching. Overall, by forming more geochemically stable phases, the treatment of fly ash with PAMAM-0G-DTC has a strong ability to reduce the toxic leaching of heavy metals at a lower dosage and suppress the risk of secondary pollution in a landfill at a wide range of pH values (2-13).


Asunto(s)
Dendrímeros , Metales Pesados , Eliminación de Residuos , Carbono , Ceniza del Carbón , Incineración , Material Particulado , Residuos Sólidos
18.
Environ Sci Pollut Res Int ; 23(2): 1460-70, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26370818

RESUMEN

Nano-zero-valent iron/activated carbon (nZVI/AC) composite was evaluated for its effectiveness in the stabilization of Cu, Pb, Cd, and Cr in dredged river sediment. Synthetic precipitation leaching procedure (SPLP) and toxicity characteristic leaching procedure (TCLP) were adopted to compare the effects of nZVI/AC dosage, particle size, time duration, and temperature on heavy metal leachability. The results show that leachability dropped considerably with the addition of nZVI/AC and powdered particles in the size of 0.075-0.18 mm was more effective in stabilization than granular ones. Stabilization effect was stable in long-term and robust against changes in temperature. Tessier sequential extraction revealed that heavy metals were associated with solid particle, inorganic or organic matters in sediment. The addition of nZVI/AC was able to convert relatively weakly bound heavy metals into more strongly bound species and thus reduce the bioavailability and toxicity. Also, the standard potential of heavy metals may decide the mechanism of stabilization process.


Asunto(s)
Cadmio/química , Carbón Orgánico/química , Cromo/química , Cobre/química , Sedimentos Geológicos/química , Hierro/química , Plomo/química , Contaminantes Químicos del Agua/química , Metales Pesados/química , Ríos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA