Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13716, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877151

RESUMEN

Expanded graphite has promising potential environmental applications due to its porous structure and oleophilic nature, which allow it to absorb large quantities of oil. The material is produced by intercalating graphite and applying heat to convert the intercalant into gas to cause expansion between the layers in the graphite. Using different intercalants and temperature conditions results in varying properties of expanded graphite. This work has proven that the sorption properties of commercial expanded graphite differ significantly due to the material's structural and elemental characteristics, which can be attributed to the intercalation method. This resulted in various degrees of exfoliation of the graphite and possible functionalisation of the graphene sheets within the structure. This affected the material's sorption capacity and its affinity for heavy metal sorption by incorporating selectivity towards the sorption of certain metals. It was found that sample EG3, which underwent a less harsh expansion, exhibited lower porosity than EG1, and thus, the sample absorbed less oil at 37.29 g/g compared to the more expanded samples EG1 and EG2 with 55.16 g/g and 48.82 g/g, respectively. However, it was able to entrap a wider variety of metal particles compared to EG1 and EG2, possibly due to its smaller cavities allowing for a capillary effect between the graphene sheets and greater Van der Waals forces. A second possibility is that ionic or coordination complexes could form with certain metals due to the possible functionalisation of the expanded graphite during the intercalation process. This would be in addition to coordination between the metals and expanded graphite carbon atoms. The findings suggest that there is evidence of functionalisation as determined by XRD and elemental analyses. However, further investigation is necessary to confirm this hypothesis. The findings in this work suggest that the first mechanism of sorption was more likely to be related to the degree of expansion of the expanded graphite. Various metals are present in used oil, and their removal can be challenging. Some metals in oil are not considered heavy since they have a relatively low density but can be associated with heavy metals in terms of toxicity.

2.
Toxics ; 12(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38787126

RESUMEN

Red mud is an industrial solid waste rarely utilized and often disposed of in landfills, resulting in resource waste and environmental pollution. However, due to its high pH and abundance of iron and aluminum oxides and hydroxides, red mud has excellent adsorption properties which can effectively remove heavy metals through ion exchange, adsorption, and precipitation. Therefore, red mud is a valuable resource rather than a waste byproduct. In recent years, red mud has been increasingly studied for its potential in wastewater treatment and soil improvement. Red mud can effectively reduce the migration and impact of heavy metals in soils and water bodies. This paper reviews the research results from using red mud to mitigate cadmium pollution in water bodies and soils, discusses the environmental risks of red mud, and proposes key research directions for the future management of red mud in cadmium-contaminated environments.

3.
Nanomaterials (Basel) ; 13(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37049254

RESUMEN

Halloysite particles, with their unique multilayer nanostructure, are demonstrated here as highly efficient and readily available sorbent of heavy metals that can be easily scaled up and used in large-scale water remediation facilities. The various methods of raw material purification were applied, and their effects were verified using techniques such as BET isotherm (determination of specific surface area and size of pores), XRF analysis (composition), and SEM imaging (determination of morphology). A series of adsorption experiments for aqueous solutions of metal ions (i.e., lead, cadmium) were carried out to quantify the sorption capacity of halloysite particles for selected heavy metals. The ability of adequately activated halloysite to efficiently remove heavy metal ions from water solutions was confirmed. The value of the zeta potential of raw and purified halloysite particles in water was determined. This enables us to understand its importance for the sorption of positively charged ions (metal, organics) at various pH values. The adsorption process conducted in the pH range of 6.0-6.5 showed significant improvement compared to the acidic conditions (pH value 3.0-3.5) and resulted in a high sorption capacity of lead ions-above 24.3 mg/g for the sulphuric acid-treated sample. The atomic scale ab initio calculations revealed a significant difference in adsorption energy between the external siloxane surface and cross-sectional interlayer surface, resulting in pronounced adsorption anisotropy. A low energy barrier was calculated for the interlayer migration of heavy metals into the halloysite interior, facilitating access to the active sites in these regions, thus significantly increasing the sorption capacity and kinetics. DFT (density functional theory) calculations supporting this study allowed for predicting the sorption potential of pure halloysite structure towards heavy metals. To confront it with experimental results, it was crucial to determine proper purification conditions to obtain such a developed structure from the mineral ore. The results show a massive increase in the BET area and confirm a high sorption potential of modified halloysite towards heavy metals.

4.
Artículo en Inglés | MEDLINE | ID: mdl-34207326

RESUMEN

The objective of this work was to fabricate modified cellulose nanofibers (CNFs) for the removal of heavy metal ions (Cd2+ and Pb2+) from wastewater. Cellulose was modified with 2-hydroxyethyl methacrylate (HEMA) via grafting copolymerization using the microwave-assisted technique in the presence of ceric ammonium nitrate (CAN) as an initiator. Prepared cellulose-graft-(2-hydroxyethyl methacrylate) (HEMA/C) copolymers were characterized using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Different factors affecting the graft yield, such as irradiation time, monomer concentrations, and initiator concentrations, were investigated. Furthermore, cellulose-graft-(2-hydroxyethyl methacrylate) copolymer nanofibers (HEMA/CNF) were fabricated by electrospinning using N,N-dimethylacetamide-LiCl as a solvent. Electrospun nanofiber copolymers were characterized using SEM and thermogravimetric analysis (TGA). Operating parameters, including time, starting metal concentrations, and adsorbent concentration, were analyzed at a pH of 5.6 for the two metal ions. The best-fit model of adsorption energy was the pseudo-second-order model, and adsorption isotherms at equilibrium were well described by the Langmuir and Freundlich models. The negative values of ΔG and positive values of ΔH and ΔS suggest that the adsorption of Cd2+ and Pb2+ ions onto electrospun HEMA/CNF is a spontaneous, endothermic, and favorable reaction.


Asunto(s)
Metales Pesados , Nanofibras , Contaminantes Químicos del Agua , Adsorción , Celulosa , Iones , Metacrilatos , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Aguas Residuales , Contaminantes Químicos del Agua/análisis
5.
Polymers (Basel) ; 13(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445565

RESUMEN

Nano-fibrillated cellulose (NFC) was extracted by a chemical method involving alkali and acid hydrolysis. The characterisation of the citrus sinensis fruit peel bran and nano-fibrillated cellulose was performed by XRD, FTIR, TEM, and FESEM. XRD confirmed the phase of NFC which showed monoclinic crystal with spherical to rod shape morphology with a size of 44-50 nm. The crystallinity index of treated NFC increased from 39% to 75%. FTIR showed the removal of lignin and hemicellulose from waste peels due to the alkaline treatment. Silver nanoparticles were also synthesised by utilizing extract of citrus sinensis skins as a reducing agent. Pharmaceutical effluent samples from an industrial area were tested by Atomic Absorption Spectrometry. Out of the four metals obtained, cadmium and chromium were remediated by silver nanoparticles with nano-fibrillated cellulose via simulated method in 100 mg/L metal-salt concentrations over a time period of 160 min. The highest removal efficiency was found for cadmium, i.e., 83%, by using silver and NFC together as adsorbents. The second highest was for chromium, i.e., 47%, but by using only NFC. The Langmuir and Freundlich isotherms were well fitted for the sorption of Cd (II) and Cr (II) with suitable high R2 values during kinetic simulation. Thus, the isolation of NFC and synthesis of silver nanoparticles proved efficient for heavy metal sorption by the reuse of waste skins.

6.
J Biosci Bioeng ; 117(3): 333-5, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24060652

RESUMEN

The biogenic magnetite nanoparticles presented here had a high capacity of adsorbing metal cations, which was approximately 30- to 40-fold greater than commercially available magnetite. These results suggest the potential application of microbial magnetite formation in the removal of toxic metal cations from water.


Asunto(s)
Cationes/aislamiento & purificación , Compuestos Férricos/química , Geobacter/metabolismo , Nanopartículas de Magnetita/química , Metales Pesados/aislamiento & purificación , Adsorción , Nanopartículas de Magnetita/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA