Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 506
Filtrar
1.
Poult Sci ; 103(11): 104205, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39226741

RESUMEN

Grandparent roosters are crucial in poultry breeding programs and significantly influence future bird generations' genetic makeup and performance. However, these roosters face considerable challenges from heat stress, which can adversely affect their reproductive performance, semen quality, and overall health and welfare. Our study aimed to investigate the effects of heat stress on the genetics of semen characteristics, identify the appropriate temperature and humidity indices (THI), and determine the threshold point of heat stress to prevent thermal stress. We analyzed data from 3,895 records of 242 Thai native grandparent roosters in conjunction with the THI using 7 THI functions and the regression method. The threshold point of heat stress, genetic parameters, rate of decline of semen characteristics per level of THI, estimated breeding values and selection index values were analyzed using the multivariate test-day model in the AIREML and BLUPF90 programs. Based on the regression coefficient and statistical criteria of the lowest -2logL and AIC values, the results showed that a THI of 78 was considered the threshold point of heat stress. The estimated heritability values ranged from 0.023 to 0.032, 0.066 to 0.069, 0.047 to 0.057, and 0.022 to 0.024 for mass movement, semen volume, sperm concentration, and the semen index, respectively. The reduction rates of mass movement, semen volume, sperm concentration, and semen index at a THI of 78 were -0.009, -0.003, -0.170, and -0.083 per THI, respectively. The genetic correlations among the semen traits were moderately to strongly positive and ranged from 0.562 to 0.797. The genetic correlations between semen traits and heat stress were negative and ranged from -0.437 to -0.749. The permanent environmental correlations among the semen traits (0.648-0.929) were positive and greater than the genetic correlations. Permanent environmental correlations between semen traits and heat stress were negative and ranged from -0.539 to -0.773. The results of the selection indices showed that the higher the selection intensity was, the greater the degree to which the selection index corresponded to genetic progress. The recommendation for animal genetic selection is that the top 10% is appropriate because it seems most preferred. Therefore, using a multivariate test-day model and selection index for the high genetic potential of semen traits and heat tolerance in Thai native grandparent roosters makes it possible to achieve genetic assessment in a large population.

2.
Plants (Basel) ; 13(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39273977

RESUMEN

Respiratory burst oxidase homologs (Rbohs) are the primary producers of reactive oxygen species (ROS), which have been demonstrated to play critical roles in plant responses to abiotic stress. Here, we explored the function of OsRbohH in heat and drought stress tolerance by generating overexpression lines (OsRbohH-OE). OsRbohH was highly induced by various abiotic stress and hormone treatments. Compared to wild-type (WT) controls, OsRbohH-OE plants exhibited enhanced tolerance to heat and drought, as determined by survival rate analyses and total chlorophyll content. Histochemical staining revealed that OsRbohH-OE accumulated less ROS. This is consistent with the observed increase in catalase (CAT) and peroxidase (POD) activities, as well as a reduced electrolyte leakage rate and malondialdehyde (MDA) content. Moreover, OsRbohH-OE exhibited enhanced sensitivity to exogenous abscisic acid (ABA), accompanied by altered expression levels of ABA synthesis and catabolic genes. Further analysis indicated that transgenic lines had lower transcripts of ABA signaling-related genes (OsDREB2A, OsLEA3, OsbZIP66, and OsbZIP72) under heat but higher levels under drought than WT. In conclusion, these results suggest that OsRbohH is a positive regulator of heat and drought tolerance in rice, which is probably performed through OsRbohH-mediated ROS homeostasis and ABA signaling.

3.
Poult Sci ; 103(12): 104254, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39255541

RESUMEN

A total of 440 one-day-old healthy male Arbor Acres broilers were equally assigned to a control group (CTL) and an early-age high-temperature exposure (EHT) group (4 replicates per group, 55 chickens per replicate). At d 3, the broilers in CTL group were reared in the normal temperature 33 ± 1°C, while the broilers in EHT group were exposed to 36 ± 1°C for 24 h. At d 43, all broilers were treated with an acute high temperature 35 ± 1°C for 5 h. The results showed that average daily gain in EHT group was decreased at d 3, but average daily gain in EHT group was increased at d 36 to 42 (P < 0.05). Plasma GLU level in EHT group was lower in broilers at d 7 or facing subsequently high temperature for 5 h (P < 0.05). The relative expression of myogenic differentiation (MyoD) gene in pectoralis major and myogenic factor 5 (Myf5) gene in biceps femoris were significantly improved at d 42 after early-age heat exposure (P < 0.05). Broilers in EHT group have a higher temperature tolerance with a lower mortality than control broilers (P < 0.05). Broilers in EHT group have a lower rectal temperature and a higher comb and ear temperature when facing subsequently acute high temperature than control broilers (P < 0.05). In addition, our study demonstrated that early-age heat exposure significantly decreased the mortality and increased the heat tolerance of broilers when facing an acute short-term heat exposures. Early-age heat exposure increased the process of myogenesis via up-regulating the MyoD and Myf5 gene expression in skeletal muscle, which accelerated average daily gain.

4.
Plant Cell Environ ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39257305

RESUMEN

Heat stress at the flowering stage significantly impacts rice grain yield, yet the number of identified genes associated with rice heat tolerance at this crucial stage remains limited. This study focuses on elucidating the function of the heat-induced gene reduced heat stress tolerance 1 (OsRHS). Overexpression of OsRHS leads to reduced heat tolerance, while RNAi silencing or knockout of OsRHS enhances heat tolerance without compromising yield, as assessed by the seed setting rate. OsRHS is localized in the cytoplasm and mainly expressed in the glume and anther of spikelet. Moreover, OsRHS was found to interact with the HSP protein cHSP70-4, and the knockout of cHSP70-4 resulted in increased heat tolerance. Complementation assays revealed that the knockout of cHSP70-4 could restore the compromised heat tolerance in OsRHS overexpression plants. Additional investigation reveals that elevated temperatures can amplify the bond between OsRHS and cHSP70-4 within rice. Furthermore, our findings indicate that under heat stress conditions during the flowering stage, OsRHS plays a negative regulatory role in the expression of many stress-related genes. These findings unveil the crucial involvement of OsRHS and cHSP70-4 in modulating heat tolerance in rice and identify novel target genes for enhancing heat resilience during the flowering phase in rice.

5.
Proc Biol Sci ; 291(2030): 20240587, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39257340

RESUMEN

Adaptation of reef-building corals to global warming depends upon standing heritable variation in tolerance traits upon which selection can act. Yet limited knowledge exists on heat-tolerance variation among conspecific individuals separated by metres to hundreds of kilometres. Here, we performed standardized acute heat-stress assays to quantify the thermal tolerance traits of 709 colonies of Acropora spathulata from 13 reefs spanning 1060 km (9.5° latitude) of the Great Barrier Reef. Thermal thresholds for photochemical efficiency and chlorophyll retention varied considerably among individual colonies both among reefs (approximately 6°C) and within reefs (approximately 3°C). Although tolerance rankings of colonies varied between traits, the most heat-tolerant corals (i.e. top 25% of each trait) were found at virtually all reefs, indicating widespread phenotypic variation. Reef-scale environmental predictors explained 12-62% of trait variation. Corals exposed to high thermal averages and recent thermal stress exhibited the greatest photochemical performance, probably reflecting local adaptation and stress pre-acclimatization, and the lowest chlorophyll retention suggesting stress pre-sensitization. Importantly, heat tolerance relative to local summer temperatures was the greatest on higher latitude reefs suggestive of higher adaptive potential. These results can be used to identify naturally tolerant coral populations and individuals for conservation and restoration applications.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Antozoos/fisiología , Clorofila/metabolismo , Aclimatación , Calor , Termotolerancia , Calentamiento Global , Adaptación Fisiológica , Australia
6.
Evolution ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258466

RESUMEN

Understanding how evolution and phenotypic plasticity contribute to variation in heat tolerance is crucial to predict responses to warming. Here we analyze 272 thermal death time curves of 53 fish species acclimated to different temperatures and quantify their relative contributions. Analyses show that evolution and plasticity account, respectively, for 80.5 % and 12.4 % of the variation in elevation across curves, whereas their slope remained invariant. Evolutionary and plastic adaptive responses differ in magnitude, with heat tolerance increasing 0.54 ºC between species and 0.32 ºC within species for every 1 ºC increase in environmental temperatures. After successfully predicting critical temperatures under ramping conditions to validate these estimates, we show that fish populations can only partly ameliorate the impact of warming waters via thermal acclimation and this deficit in plasticity could increase as the warming accelerates.

7.
Heliyon ; 10(16): e36548, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39262988

RESUMEN

Synthetic microbial communities, which simplify the complexity of natural ecosystems while retaining their key features, are gaining momentum in engineering and biotechnology applications. One potential application is the development of bioinoculants, offering an eco-friendly, sustainable solution to promote plant growth and increase resilience to abiotic stresses amidst climate change. A potential source for stress-tolerant microbes is those associated with desert plants, evolved and shaped by selective pressures to promote host health under harsh environmental conditions. In our research, we aim to design and develop synthetic microbial consortia inspired by the natural microbiota of four desert plants native to the Arabian Peninsula, inferred from our previous work identifying the structure and predicting the function of these microbial communities using high throughput eDNA barcoding. To obtain culturable microbes that are manageable and traceable yet still representative of natural microbial communities, we combined multiple experimental protocols coupled with compatibility and synergy assessments, along with in planta testing. We isolated a total of 75 bacteria and conducted detailed biological evaluations, revealing that an overwhelming majority (84 %) of all isolates produced indole acetic acid (IAA), with 73 % capable of solubilizing phosphate, 60 % producing siderophores, 47 % forming biofilms, and 35 % producing ACC deaminase, all contributing to plant growth and stress tolerance. We constructed four synthetic microbial consortia, named EcoBiomes, consisting of synergistic combinations of multiple species that can co-exist without significant antagonism. Our preliminary data indicate that EcoBiomes enhance the resilience of heterologous host plants under simulated environmental stresses, including drought, heat, and salinity. EcoBiomes offer a unique, sustainable, and eco-friendly solution to mitigate the impact of climate change on sensitive ecosystems, ultimately affecting global food security.

8.
J Sci Food Agric ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136353

RESUMEN

BACKGROUND: High-temperature (HT) stress significantly affects the quality of rice (Oryza sativa L.), although the underlying the mechanism remains unknown. Therefore, in the present study, we assessed protein components, amino acids, mineral element levels, starch biosynthesis enzyme activity and gene expression of two heat-sensitive and two heat-tolerant genotypes under HT treatment during early (from 1 to 10 days, T1) and mid-filling (from 11 to 20 days, T2) after anthesis. RESULTS: Except for one cultivar, most rice varieties exhibited increased levels of amylose, chalky degree and protein content, along with elevated cracked grains and pasting temperatures and, consequently, suppressed amino acid levels under HT stress. HT treatment also increased protein components, macro- (Mg, K, P and S) and microelements (Cu, Zn, and Mo) in the rice flour. Both HT treatments reduced the activity of ADP-glucose pyrophosphate, ground-bound starch synthase, as well as the relative ratio of amylose to total starch, at the same time increasing starch branch enzyme activity. The expression levels of OsAGPL2, OsSSS1 and OsSBE1 in all varieties exhibited the same trends as enzyme activity under HT treatment. CONCLUSION: High temperatures negatively affected rice quality during grain filling, which is related to heat tolerance and grain shape. Altered enzymatic activity is crucial to compensate for the lowered enzyme quality under heat stress. © 2024 Society of Chemical Industry.

10.
Plant Cell Physiol ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119683

RESUMEN

High temperature stress (HTS) affects the growth and production of vegetable crops, including eggplant (Solanum melongena L.). Jasmonic acid (JA) plays key roles in regulating resistance to biotic and abiotic stresses in plants. Nonetheless, reports on the role of JA in heat tolerance in eggplant are rare. Herein, the effects of JA on heat tolerance in eggplant and the functions of the JA biosynthetic genes SmLOX4 and SmLOX5 were analysed. The results showed that the JA content increased under high temperature treatment (HTT) and that exogenous methyl jasmonate (MeJA) treatment reduced the damage caused by HTT to eggplant. The expression of SmLOX4 and SmLOX5 was induced by HTT and was significantly positively correlated with JA biosynthesis. SmLOX4 and SmLOX5 were localized in chloroplasts. The silencing of SmLOX4 and SmLOX5 by virus-induced gene silencing (VIGS) suppressed the heat tolerance of eggplant plants, whereas the overexpression of SmLOX4 and SmLOX5 enhanced the heat tolerance of Arabidopsis thaliana plants. JA content and the expression of JA signalling-related genes decreased in the SmLOX4- and SmLOX5-silenced plants but increased in the OE-SmLOX4 and OE-SmLOX5 transgenic plants. These results revealed that SmLOX4 and SmLOX5 improved eggplant heat tolerance by mediating JA biosynthesis and JA signalling pathways.

11.
Genomics ; 116(5): 110915, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134161

RESUMEN

The indica rice variety Huizhan shows elite traits of disease resistance and heat tolerance. However, the underlying genetic basis of these traits is not fully understood due to limited genomic resources. Here, we used Nanopore long-read and next-generation sequencing technologies to generate a chromosome-scale genome assembly of Huizhan. Comparative genomics analysis uncovered a large chromosomal inversion and expanded gene families that are associated with plant growth, development and stress responses. Functional rice blast resistance genes, including Pi2, Pib and Ptr, and bacterial blight resistance gene Xa27, contribute to disease resistance of Huizhan. Furthermore, integrated genomics and transcriptomics analyses showed that OsHIRP1, OsbZIP60, the SOD gene family, and various transcription factors are involved in heat tolerance of Huizhan. The high-quality genome assembly and comparative genomics results presented in this study facilitate the use of Huizhan as an elite parental line in developing rice varieties adapted to disease pressure and climate challenges.

12.
Animals (Basel) ; 14(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39123741

RESUMEN

Climate change poses a significant threat to the poultry industry, especially in hot climates that adversely affect chicken growth, development, and productivity through heat stress. This literature review evaluates the evolutionary background of chickens with the specific genetic characteristics that can help chickens to cope with hot conditions. Both natural selection and human interventions have influenced the genetic characteristics of the breeds used in the current poultry production system. The domestication of chickens from the Red junglefowl (Gallus gallus) has resulted in the development of various breeds with distinct genetic differences. Over the past few years, deliberate breeding for desirable traits (such as meat production and egg quality) in chickens has resulted in the emergence of various economically valuable breeds. However, this selective breeding has also caused a decrease in the genetic diversity of chickens, making them more susceptible to environmental stressors like heat stress. Consequently, the chicken breeds currently in use may possess a limited ability to adapt to challenging conditions, such as extreme heat. This review focuses on evaluating potential genes and pathways responsible for heat tolerance, including heat shock response, antioxidant defense systems, immune function, and cellular homeostasis. This article will also discuss the physiological and behavioral responses of chicken varieties that exhibit genetic resistance to heat, such as the naked neck and dwarf traits in different indigenous chickens. This article intends to review the current genomic findings related to heat tolerance in chickens that used methods such as the genome-wide association study (GWAS) and quantitative trait loci (QTL) mapping, offering valuable insights for the sustainability of poultry in the face of global warming.

13.
PNAS Nexus ; 3(8): pgae293, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39118835

RESUMEN

Adaptation and tolerance to changes in heat and cold temperature are essential for survival and proliferation in plants and animals. However, there is no clear information regarding the common molecules between animals and plants. In this study, we found that heat, and cold tolerance of the nematode Caenorhabditis elegans is oppositely regulated by the RNA-binding protein EMB-4, whose plant homolog contains polymorphism causing heat tolerance diversity. Caenorhabditis elegans alters its cold and heat tolerance depending on the previous cultivation temperature, wherein EMB-4 respectively acts as a positive and negative controller of heat and cold tolerance by altering gene expression. Among the genes whose expression is regulated by EMB-4, a phospholipid scramblase, and an acid sphingomyelinase, which are involved in membrane lipid metabolism, were found to play essential roles in the negative regulation of heat tolerance.

14.
J Therm Biol ; 123: 103919, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39024847

RESUMEN

For small endotherms inhabiting desert ecosystems, defending body temperatures (Tb) is challenging as they contend with extremely high ambient temperatures (Ta) and limited standing water. In the arid zone, bats may thermoconform whereby Tb varies with Ta, or may evaporatively cool themselves to maintain Tb < Ta. We used an integrative approach that combined both temperature telemetry and flow through respirometry to investigate the ecological and physiological strategies of lesser long-eared bats (Nyctophilus geoffroyi) in Australia's arid zone. We predicted individuals would exhibit desert-adapted thermoregulatory patterns (i.e., thermoconform to prioritise water conservation), and that females would be more conservative with their water reserves for evaporative cooling compared to males. Temperature telemetry data indicated that free-ranging N. geoffroyi were heterothermic (Tskin = 18.9-44.9 °C) during summer and thermoconformed over a wide range of temperatures, likely to conserve water and energy during the day. Experimentally, at high Tas, females maintained significantly lower Tb and resting metabolic rates, despite lower evaporative water loss (EWL) rates compared to males. Females only increased EWL at experimental Ta = 42.5 °C, significantly higher than males (40.7 °C), and higher than any bat species yet recorded. During the hottest day of this study, our estimates suggest the water required for evaporative cooling ranged from 18.3% (females) and 25.5% (males) of body mass. However, if we extrapolate these results to a recent heatwave these values increase to 36.5% and 47.3%, which are likely beyond lethal limits. It appears this population is under selective pressures to conserve water reserves and that these pressures are more pronounced in females than males. Bats in arid ecosystems are threatened by both current and future heatwaves and we recommend future conservation efforts focus on protecting current roost trees and creating artificial standing water sites near vulnerable populations.


Asunto(s)
Regulación de la Temperatura Corporal , Quirópteros , Clima Desértico , Pérdida Insensible de Agua , Animales , Quirópteros/fisiología , Femenino , Masculino , Metabolismo Basal , Temperatura Corporal , Calor
15.
Heliyon ; 10(13): e33810, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39071570

RESUMEN

This study explores the beneficial effects of Auricularia auricula (AA) as a feed additive in promoting growth, digestive enzyme activities, antioxidative responses, heat tolerance, and disease resistance against Edwardsiella tarda in African catfish (Clarias gariepinus) farming. The application of feed additives is a hot topic in recent aquaculture studies aimed at promoting the growth and health of aquaculture species. After 8 weeks of feeding trial, the results of the present study revealed that fish-fed AA diets performed significantly better (p < 0.05) compared to the control group in growth performances, including final weight, weight gain, and specific growth rate. The highest performances were observed in the fish-fed AA at 3 and 4 %. A similar trend was also observed in the values of feed conversion ratio, hepatosomatic index, and visceral somatic index, with the lowest values (p < 0.05) in the fish-fed AA at 3 and 4 %. AA diets enhanced the activities of all tested digestive enzymes (amylase, protease, and lipase) significantly (p < 0.05), with the highest activities in the fish-fed AA at 3 and 4 %. Meanwhile, fish-fed AA diets exhibited significantly higher (p < 0.05) catalase, superoxide dismutase, and glutathione peroxidase activities both before and after heat stress, with the highest activities in the fish that received AA at 3 and 4 %. Furthermore, AA diets stimulated disease resistance in African catfish, with the fish-fed AA at 4 % performing the highest cumulative survival rate (73.3 ± 5.77 %) post-infection with E. tarda in African catfish. The findings of the current study suggest that AA has huge potential as a feed additive in African catfish farming.

16.
Res Sq ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38978592

RESUMEN

The year of 2023 displayed the highest average global temperatures since it has been recorded-the duration and severity of extreme heat are projected to increase. Rising global temperatures represent a major public health threat, especially to occupations exposed to hot environments, such as construction and agricultural workers, and first responders. Despite efforts of the scientific community, there is still a need to characterize the pathophysiological processes leading to heat related illness and develop biomarkers that can predict its onset. Here, we performed a plasma lipidomic analysis on male and female subjects who underwent heat tolerance testing (HTT), consisting of a 2-h treadmill walk at 5 km/h with 2% inclination at a controlled temperature of 40°C. We identified 995 lipids from 27 classes, with nearly half of all detected lipids being responsive to HTT. Lipid classes related to substrate utilization were predominantly affected by HTT, with a downregulation of triacylglycerols and upregulation of free fatty acids and acyl-carnitines (CARs). We additionally examined correlations between changes in plasma lipids by using the physiological strain index (PSI). Here, even chain CAR 4:0, 14:0 and 16:1, suggested by-products of incomplete beta oxidation, and diacylglycerols displayed the highest correlation to PSI. PSI did not correlate with plasma lactate levels, suggesting that correlations between even chain CARs and PSI is related to metabolic efficiency versus physical exertion. Overall, our results show that HTT has a strong impact on the plasma lipidome and that metabolic inefficiencies may underlie heat intolerance.

17.
Sci Rep ; 14(1): 15193, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956145

RESUMEN

Birds maintain some of the highest body temperatures among endothermic animals. Often deemed a selective advantage for heat tolerance, high body temperatures also limits birds' thermal safety margin before reaching lethal levels. Recent modelling suggests that sustained effort in Arctic birds might be restricted at mild air temperatures, which may require reductions in activity to avoid overheating, with expected negative impacts on reproductive performance. We measured within-individual changes in body temperature in calm birds and then in response to an experimental increase in activity in an outdoor captive population of Arctic, cold-specialised snow buntings (Plectrophenax nivalis), exposed to naturally varying air temperatures (- 15 to 36 °C). Calm buntings exhibited a modal body temperature range from 39.9 to 42.6 °C. However, we detected a significant increase in body temperature within minutes of shifting calm birds to active flight, with strong evidence for a positive effect of air temperature on body temperature (slope = 0.04 °C/ °C). Importantly, by an ambient temperature of 9 °C, flying buntings were already generating body temperatures ≥ 45 °C, approaching the upper thermal limits of organismal performance (45-47 °C). With known limited evaporative heat dissipation capacities in these birds, our results support the recent prediction that free-living buntings operating at maximal sustainable rates will increasingly need to rely on behavioural thermoregulatory strategies to regulate body temperature, to the detriment of nestling growth and survival.


Asunto(s)
Frío , Pájaros Cantores , Animales , Regiones Árticas , Pájaros Cantores/fisiología , Regulación de la Temperatura Corporal/fisiología , Temperatura Corporal/fisiología , Cruzamiento , Reproducción/fisiología , Femenino , Masculino , Temperatura
18.
J Agric Food Chem ; 72(28): 15586-15600, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38949485

RESUMEN

Multiprotein bridging factor 1 (MBF1) is a very important transcription factor (TF) in plants, whose members influence numerous defense responses. Our study found that MBF1c in Cucurbitaceae was highly conserved. CsMBF1c expression was induced by temperature, salt stress, and abscisic acid (ABA) in cucumber. Overexpressed CsMBF1c enhanced the heat resistance of a cucumber, and the Csmbf1c mutant showed decreased resistance to high temperatures (HTs). CsMBF1c played an important role in stabilizing the photosynthetic system of cucumber under HT, and its expression was significantly associated with heat-related TFs and genes related to protein processing in the endoplasmic reticulum (ER). Protein interaction showed that CsMBF1c interacted with dehydration-responsive element binding protein 2 (CsDREB2) and nuclear factor Y A1 (CsNFYA1). Overexpression of CsNFYA1 in Arabidopsis improved the heat resistance. Transcriptional activation of CsNFYA1 was elevated by CsMBF1c. Therefore, CsMBF1c plays an important regulatory role in cucumber's resistance to high temperatures.


Asunto(s)
Cucumis sativus , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Termotolerancia , Factores de Transcripción , Cucumis sativus/genética , Cucumis sativus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Termotolerancia/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Calor , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
19.
J Anim Ecol ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39030760

RESUMEN

Variation in heat tolerance among populations can determine whether a species is able to cope with ongoing climate change. Such variation may be especially important for ectotherms whose body temperatures, and consequently, physiological processes, are regulated by external conditions. Additionally, differences in body size are often associated with latitudinal clines, thought to be driven by climate gradients. While studies have begun to explore variation in body size and heat tolerance within species, our understanding of these patterns across large spatial scales, particularly regarding the roles of plasticity and genetic differences, remains incomplete. Here, we examine body size, as measured by wing length, and thermal tolerance, as measured by the time to immobilisation at high temperatures ("thermal knockdown"), in populations of the mosquito Aedes sierrensis collected from across a large latitudinal climate gradient spanning 1300 km (34-44° N). We find that mosquitoes collected from lower latitudes and warmer climates were more tolerant of high temperatures than those collected from higher latitudes and colder climates. Moreover, body size increased with latitude and decreased with temperature, a pattern consistent with James' rule, which appears to be a result of plasticity rather than genetic variation. Our results suggest that warmer environments produce smaller and more thermally tolerant populations.

20.
J Food Prot ; 87(9): 100334, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39074612

RESUMEN

Lettuce has been commonly associated with the contamination of human pathogens, such as Escherichia coli O157:H7 (hereafter O157:H7), which has resulted in serious foodborne illnesses. Contamination events may happen throughout the farm-to-fork chain, when O157:H7 colonizes edible tissues and closely interacts with the plant. Environmental conditions have a significant impact on many plant-microbe interactions; however, it is currently unknown whether temperature affects O157:H7 colonization of the lettuce phyllosphere. In this study, we investigated the relationship between elevated growth temperatures, O157:H7 persistence, and lettuce head growth using 25 lettuce genotypes. Plants were grown under optimal or elevated temperatures for 3.5 weeks before being inoculated with O157:H7. The bacterial population size in the phyllosphere and lettuce head area was estimated at 0- and 10-days postinoculation (DPI) to assess bacterial persistence and head growth during contamination. We found that growing temperature can have a positive, negative, or no effect on O157:H7 persistence depending on the lettuce genotype. Furthermore, temperature had a greater effect on head area size than the presence of O157:H7. The results suggested that the combination of plant genotype and temperature level is an important factor for O157:H7 colonization of lettuce and the possibility to combine desirable food safety traits with heat tolerance into the lettuce germplasm.


Asunto(s)
Escherichia coli O157 , Genotipo , Lactuca , Temperatura , Lactuca/microbiología , Escherichia coli O157/crecimiento & desarrollo , Humanos , Microbiología de Alimentos , Recuento de Colonia Microbiana , Contaminación de Alimentos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA