Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Biotechnol (NY) ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240443

RESUMEN

The severity, frequency, and duration of extreme events, in the context of global warming, have placed many marine ecosystems at high risk. Therefore, the application of methods that can mediate the impacts of global warming on marine organisms seems to be an emerging necessity in the near term. In this context, enhancing the thermal resilience of marine organisms may be crucial for their sustainability. It has been shown that the repeated time-limited exposure of an organism to an environmental stimulus modifies its response mode, thus enhancing resilience and allowing adaptation of the physiological and developmental phenotype to environmental stress. In the present study, we investigated the "stress memory" effect caused by heat hardening on Mytilus galloprovincialis cellular pathways to identify the underlying biochemical mechanisms that enhance mussel thermal tolerance. Heat hardening resulted in increased ETS activity and ATP production and increased autophagic performance at all elevated temperatures (24 °C, 26 °C, and 28 °C). Furthermore, at these increased temperatures, apoptosis and inflammation remain at significantly lower levels in pregnant individuals than in nonhardened individuals. Autophagy, as a negative regulator of apoptosis, may lead to decreased damage to surrounding cells, which in turn alleviates inflammatory effects. In conclusion, the exposure of mussels to heat hardening seems to provide a physiological response that enhances heat tolerance and increases cell survival through increased energy production and reduced cell death and inflammatory responses. The latter can be utilized for the management and conservation of aquatic species of economic value or endangered status.

2.
J Therm Biol ; 123: 103930, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39116624

RESUMEN

Thermal limits are often used as proxies to assess the vulnerability of ectotherms to environmental change. While meta-analyses point out a relatively low plasticity of heat limits and a large interspecific variability, only few studies have compared the heat tolerance of interacting species. The present study focuses on the thermal limits, and their plasticity (heat hardening), of three species co-occurring in Western Africa: two ectoparasitoid species, Dinarmus basalis (Rondani) (Hymenoptera: Pteromalidae) and Eupelmus vuilleti (Crawford) (Hymenoptera: Eupelmidae), and their common host, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). The investigation delves into the Critical Thermal Maximum (CTmax), representing the upper tolerance limit, to understand how these species may cope with extreme thermal events. The CTmax of all three species appeared similarly high, hovering around 46.5 °C, exceeding the global mean CTmax observed in insects by 3.5 °C. Short-term exposure to moderate heat stress showed no impact on CTmax, suggesting a potential lack of heat hardening in these species. Therefore, we emphasized the similarity of heat tolerance in these interacting species, potentially stemming from both evolutionary adaptations to high temperatures during development and the stable and similar microclimate experienced by the three species over the years. While the high thermal tolerance should allow these species to endure extreme temperature events, the apparent lack of plasticity raises concerns about their ability to adapt to future climate change scenarios. Overall, this research provides valuable insights into the thermal physiology of these interacting species, providing a basis for understanding their responses to climate change and potential implications for the host-parasitoid system.


Asunto(s)
Escarabajos , Interacciones Huésped-Parásitos , Termotolerancia , Animales , Escarabajos/fisiología , Escarabajos/parasitología , Avispas/fisiología , Especificidad de la Especie , Clima Tropical , Calor , Himenópteros/fisiología
3.
J Therm Biol ; 123: 103912, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39024848

RESUMEN

The intensity and duration of heat waves, as well as average global temperatures, are expected to increase due to climate change. Heat waves can cause physiological stress and reduce fitness in animals. Species can reduce overheating risk through phenotypic plasticity, which allows them to raise their thermal tolerance limits over time. This mechanism could be important for ectotherms whose body temperatures are directly influenced by available environmental temperatures. Geckos are a large, diverse group of ectotherms that vary in their thermal habitats and times of daily activity, which could affect how they physiologically adjust to heat waves. Data on thermal physiology are scarce for reptiles, with only one study in geckos. Understanding thermal tolerance and plasticity, and their relationship, is essential for understanding how some species are able to adjust or adapt to changing temperatures. In this study, we estimated thermal tolerance and plasticity, and their interaction, in the crepuscular gecko, Eublepharis macularius, a species that is emerging as a model for reptile biology. After estimating basal thermal tolerance for 28 geckos, thermal tolerance was measured for each individual a second time at several timepoints (3, 6, or 24 h) to determine thermal tolerance plasticity. We found that thermal tolerance plasticity (1) does not depend on the basal thermal tolerance of the organism, (2) was highest after 6 h from initial heat shock, and (3) was negatively influenced by individual body mass. Our findings contribute to the increasing body of work focused on understanding the influence of biological and environmental factors on thermal tolerance plasticity in organisms and provide phenotypic data to further investigate the molecular basis of thermal tolerance plasticity in organisms.


Asunto(s)
Aclimatación , Respuesta al Choque Térmico , Lagartos , Lagartos/fisiología , Animales , Calentamiento Global , Masculino , Femenino , Caracteres Sexuales , Tamaño Corporal
4.
Biol Open ; 13(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427330

RESUMEN

Bees are essential pollinators and understanding their ability to cope with extreme temperature changes is crucial for predicting their resilience to climate change, but studies are limited. We measured the response of the critical thermal maximum (CTMax) to short-term acclimation in foragers of six bee species from the Greek island of Lesvos, which differ in body size, nesting habit, and level of sociality. We calculated the acclimation response ratio as a metric to assess acclimation capacity and tested whether bees' acclimation capacity was influenced by body size and/or CTMax. We also assessed whether CTMax increases following acute heat exposure simulating a heat wave. Average estimate of CTMax varied among species and increased with body size but did not significantly shift in response to acclimation treatment except in the sweat bee Lasioglossum malachurum. Acclimation capacity averaged 9% among species and it was not significantly associated with body size or CTMax. Similarly, the average CTMax did not increase following acute heat exposure. These results indicate that bees might have limited capacity to enhance heat tolerance via acclimation or in response to prior heat exposure, rendering them physiologically sensitive to rapid temperature changes during extreme weather events. These findings reinforce the idea that insects, like other ectotherms, generally express weak plasticity in CTMax, underscoring the critical role of behavioral thermoregulation for avoidance of extreme temperatures. Conserving and restoring native vegetation can provide bees temporary thermal refuges during extreme weather events.


Asunto(s)
Termotolerancia , Abejas , Animales , Aclimatación/fisiología , Calor , Cambio Climático , Regulación de la Temperatura Corporal
5.
J Therm Biol ; 119: 103778, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38171068

RESUMEN

Climate change is creating novel thermal environments via rising temperatures and increased frequency of severe weather events. Short-term phenotypic adjustments, i.e., phenotypic plasticity, may facilitate species persistence during adverse environmental conditions. A plastic response that increases thermal tolerance is heat hardening, which buffers organisms from extreme heat and may enhance short term survival. However, heat hardening responses may incur a cost with concomitant decreases in thermal preference and physiological performance. Thus, phenotypic shifts accompanying a hardening response may be maladaptive in warming climates. Understanding how heat hardening influences other traits associated with fitness and survival will clarify its potential as an adaptive response to altered thermal niches. Here, we studied the effects of heat hardening on boldness behavior in the color polymorphic tree lizard, Urosaurus ornatus. Boldness in lizards influences traits such as territory maintenance, mating success, and survivorship and is repeatable in U. ornatus. We found that when lizards underwent a heat hardening response, boldness expression significantly increased. This trend was driven by males. Bolder individuals also exhibited lower field active body temperatures. This behavioral response to heat hardening may increase resource holding potential and territoriality in stressful environments but may also increase predation risk. This study highlights the need to detail associated phenotypic shifts with stress responses to fully understand their adaptive potential in rapidly changing environments.


Asunto(s)
Calor Extremo , Lagartos , Humanos , Masculino , Animales , Respuesta al Choque Térmico , Temperatura , Adaptación Fisiológica/fisiología , Temperatura Corporal , Lagartos/fisiología
6.
Front Physiol ; 14: 1244314, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841313

RESUMEN

Introduction: Temperature affects organisms' metabolism and ecological performance. Owing to climate change, sea warming constituting a severe source of environmental stress for marine organisms, since it increases at alarming rates. Rapid warming can exceed resilience of marine organisms leading to fitness loss and mortality. However, organisms can improve their thermal tolerance when briefly exposed to sublethal thermal stress (heat hardening), thus generating heat tolerant phenotypes. Methods: We investigated the "stress memory" effect caused by heat hardening on M. galloprovincialis metabolite profile of in order to identify the underlying biochemical mechanisms, which enhance mussels' thermal tolerance. Results: The heat hardening led to accumulation of amino acids (e.g., leucine, isoleucine and valine), including osmolytes and cytoprotective agents with antioxidant and anti-inflammatory properties that can contribute to thermal protection of the mussels. Moreover, proteolysis was inhibited and protein turnover regulated by the heat hardening. Heat stress alters the metabolic profile of heat stressed mussels, benefiting the heat-hardened individuals in increasing their heat tolerance compared to the non-heat-hardened ones. Discussion: These findings provide new insights in the metabolic mechanisms that may reinforce mussels' tolerance against thermal stress providing both natural protection and potential manipulative tools (e.g., in aquaculture) against the devastating climate change effects on marine organisms.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37742820

RESUMEN

To quantify heat tolerance in insects, two manual observation measures are typically implemented: the time to physiological collapse at a static noxious temperature (time to knockdown; TKD) or the temperature at which collapse occurs as temperature increases (critical thermal maximum; CTmax). Both assay modalities focus on physiological collapse, neglecting the prior behavioral processes. In this study, the locomotion response of Drosophila melanogaster to relatively high temperature (39 and 40.5 °C) was quantified using the TriKinetics Drosophila Activity Monitor (DAM2 system). The absence of locomotion was defined as the state of physiological collapse resulting from extended exposure to high temperature. An easy-to-use executable application that allows the user to automatically extract individual TKD from the activity data was developed. For validation, manual TKD assays were performed in parallel to automated assays across multiple factors, including sex, hardening, recovery time after hardening, and assay temperature, which gave similar results. In terms of behavioral aspects, heat hardening consistently led to reduced activity during a subsequent heat stress, irrespective of assay temperature, sex, or recovery time after hardening. Our automated heat tolerance assay utilizing the DAM2 system is one way to expand the scope of the heat tolerance phenotype to include a behavioral component in conjunction with the traditional TKD measure.


Asunto(s)
Termotolerancia , Animales , Drosophila melanogaster/genética , Calor , Fenotipo , Drosophila
8.
J Exp Biol ; 226(17)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37578032

RESUMEN

Climate change poses a threat to organisms across the world, with cold-adapted species such as bumble bees (Bombus spp.) at particularly high risk. Understanding how organisms respond to extreme heat events associated with climate change as well as the factors that increase resilience or prime organisms for future stress can inform conservation actions. We investigated the effects of heat stress within different contexts (duration, periodicity, with and without access to food, and in the laboratory versus field) on bumble bee (Bombus impatiens) survival and heat tolerance. We found that both prolonged (5 h) heat stress and nutrition limitation were negatively correlated with worker bee survival and thermal tolerance. However, the effects of these acute stressors were not long lasting (no difference in thermal tolerance among treatment groups after 24 h). Additionally, intermittent heat stress, which more closely simulates the forager behavior of leaving and returning to the nest, was not negatively correlated with worker thermal tolerance. Thus, short respites may allow foragers to recover from thermal stress. Moreover, these results suggest there is no priming effect resulting from short- or long-duration exposure to heat - bees remained equally sensitive to heat in subsequent exposures. In field-caught bumble bees, foragers collected during warmer versus cooler conditions exhibited similar thermal tolerance after being allowed to recover in the lab for 16 h. These studies offer insight into the impacts of a key bumble bee stressor and highlight the importance of recovery duration, stressor periodicity and context on bumble bee thermal tolerance outcomes.


Asunto(s)
Hipotermia Inducida , Termotolerancia , Abejas , Animales , Alimentos , Conducta Alimentaria
9.
Sci Total Environ ; 903: 165785, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37499827

RESUMEN

The thick-shell mussel Mytilus coruscus serves as a common sessile intertidal species and holds economic significance as an aquatic organism. M. coruscus often endure higher temperatures than their ideal range during consecutive low tides in the spring. This exposure to elevated temperatures provides them with a thermal tolerance boost, enabling them to adapt to high-temperature events caused by extreme low tides and adverse weather conditions. This phenomenon is referred to as heat-hardening. Some related studies showed the phenomenon of heat-hardening in sessile intertidal species but not reported at the mechanism level based on transcriptome so far. In this study, physiological experiments, gene family identification and transcriptome sequencing were performed to confirm the thermotolerance enhancement based on heat-hardening and explore the mechanism in M. coruscus. A total of 2935 DEGs were identified and the results of the KEGG enrichment showed that seven heat-hardening relative pathways were enriched, including Toll-like receptor signal pathway, Arachidonic acid metabolism, and others. Then, 24 HSP70 members and 36 CYP2 members, were identified, and the up-regulated members are correlated with increasing thermotolerance. Finally, we concluded that the heat-hardening M. coruscus have a better thermotolerance because of the capability of maintaining the integrity and the phenomenon of vasodilation of the gill under thermal stress. Further, the physiological experiments yielded the same conclusions. Overall, this study confirms the thermotolerance enhancement caused by heat-hardening and reveals the survival strategy in M. coruscus. In addition, the conclusion provides a new reference for studying the intertidal species' heat resistance mechanisms to combat extreme heat events and the strategies for dealing with extreme weather in aquaculture under the global warming trend.

10.
J Exp Zool A Ecol Integr Physiol ; 339(4): 339-345, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36811331

RESUMEN

Plasticity in heat tolerance provides ectotherms the ability to reduce overheating risk during thermal extremes. However, the tolerance-plasticity trade-off hypothesis states that individuals acclimated to warmer environments have a reduced plastic response, including hardening, limiting their ability to further adjust their thermal tolerance. Heat hardening describes the short-term increase in heat tolerance following a heat shock that remains understudied in larval amphibians. We sought to examine the potential trade-off between basal heat tolerance and hardening plasticity of a larval amphibian, Lithobates sylvaticus, in response to differing acclimation temperatures and periods. Lab-reared larvae were exposed to one of two acclimation temperatures (15°C and 25°C) for either 3 or 7 days, at which time heat tolerance was measured as critical thermal maximum (CTmax ). A hardening treatment (sub-critical temperature exposure) was applied 2 h before the CTmax assay for comparison to control groups. We found that heat-hardening effects were most pronounced in 15°C acclimated larvae, particularly after 7 days of acclimation. By contrast, larvae acclimated to 25°C exhibited only minor hardening responses, while basal heat tolerance was significantly increased as shown by elevated CTmax temperatures. These results are in line with the tolerance-plasticity trade-off hypothesis. Specifically, while exposure to elevated temperatures induces acclimation in basal heat tolerance, shifts towards upper thermal tolerance limits constrain the capacity for ectotherms to further respond to acute thermal stress.


Asunto(s)
Aclimatación , Calor , Animales , Temperatura , Aclimatación/fisiología , Larva/fisiología , Anfibios
11.
Sci Total Environ ; 857(Pt 2): 159430, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36244479

RESUMEN

The temperature has always been a key environmental factor in Manila clam (Ruditapes philippinarum) culture. In this study, the Manila clam was treated to different temperature pre-heat (28 °C, 30 °C) and gained heat tolerance after recover of 12 h, and a survival rate (14.7 %-49.1 %) advantage after high temperature challenge (30 and 32 °C). To further investigate the physiological and metabolism changes in Manila clam that had experienced a heat stress, non-targeted metabolomics (LC-MS/MS) was used to analyze the metabolic responses of gills in three group Manila clams during the heat challenge. Metabolic profiles revealed that high temperature caused changes in fatty acid composition, energy metabolism, antioxidant metabolites, hydroxyl compounds, and amino acids in heat-hardened clams compared to non-hardened clams. We found a number of significantly enriched pathways, including cAMP signaling pathway, serotonergic synapse, and biosynthesis of unsaturated fatty acids in heat-hardened Manila clam compared with non-hardened and untreated Manila clam. After a brief high temperature treatment, the physiological maintenance ability of Manila clam was improved. Combined with metabolomics analysis, heat hardening treatment may improve the energy metabolism and antioxidant ability of Manila clam. These results provide new insights into the cellular and metabolic responses of Manila clams following high temperature stress.


Asunto(s)
Antioxidantes , Bivalvos , Animales , Cromatografía Liquida , Temperatura , Antioxidantes/metabolismo , Espectrometría de Masas en Tándem , Bivalvos/metabolismo
12.
J Exp Biol ; 225(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36426666

RESUMEN

Organisms can modify and increase their thermal tolerance faster and more efficiently after a brief exposure to sublethal thermal stress. This response is called 'heat hardening' as it leads to the generation of phenotypes with increased heat tolerance. The aim of this study was to investigate the impact of heat hardening on the metabolomic profile of Mytilus galloprovincialis in order to identify the associated adjustments of biochemical pathways that might benefit the mussels' thermal tolerance. Thus, mussels were exposed sequentially to two different phases (heat hardening and acclimation phases). To gain further insight into the possible mechanisms underlying the metabolic response of the heat-hardened M. galloprovincialis, metabolomics analysis was complemented by the estimation of mRNA expression of phosphoenolpyruvate carboxykinase (PEPCK), pyruvate kinase (PK) and alternative oxidase (AOX) implicated in the metabolic pathways of gluconeogenesis, glycolysis and redox homeostasis, respectively. Heat-hardened mussels showed evidence of higher activity of the tricarboxylic acid (TCA) cycle and diversification of upregulated metabolic pathways, possibly as a mechanism to increase ATP production and extend survival under heat stress. Moreover, formate and taurine accumulation provide an antioxidant and cytoprotective role in mussels during hypoxia and thermal stress. Overall, the metabolic responses in non-heat-hardened and heat-hardened mussels underline the upper thermal limits of M. galloprovincialis, set at 26°C, and are in accordance with the OCLTT concept. The ability of heat-hardened mussels to undergo a rapid gain and slow loss of heat tolerance may be an advantageous strategy for coping with intermittent and often extreme temperatures.


Asunto(s)
Mytilus , Termotolerancia , Animales , Mytilus/fisiología , Respuesta al Choque Térmico , Calor , Aclimatación/fisiología
13.
Insect Biochem Mol Biol ; 139: 103652, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34562590

RESUMEN

Under exposure to harmful environmental stresses, organisms exhibit a general stress response involving upregulation of the expression of heat shock proteins (HSPs) which is thought to be adaptive. Small heat shock proteins (sHSPs) are key components of this response, although shsp genes may have other essential roles in development. However, the upregulation of expression of a suite of genes under stress may not necessarily be evidence of an adaptive response to stress that involves those genes. To explore this issue, we used the CRISPR/Cas9 system to investigate pleiotropic effects of the hsp23 gene in Drosophila melanogaster. Transgenic flies carrying a pCFD5 plasmid containing sgRNAs were created to generate a complete knockout of the hsp23 gene. The transgenic line lacking hsp23 showed an increased hatch rate and no major fitness costs under an intermediate temperature used for culturing the flies. In addition, hsp23 knockout affected tolerance to hot and cold temperature extremes but in opposing directions; knockout flies had reduced tolerance to cold, but increased tolerance to heat. Despite this, hsp23 expression (in wild type flies) was increased under both hot and cold conditions. The hsp23 gene was required for heat hardening at the pupal stage, but not at the 1st-instar larval stage, even though the gene was upregulated in wild type controls at that life stage. The phenotypic effects of hsp23 were not compensated for by expression changes in other shsps. Our study shows that the fitness consequences of an hsp gene knockout depends on environmental conditions, with potential fitness benefits of gene loss even under conditions when the gene is normally upregulated.


Asunto(s)
Frío , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Aptitud Genética , Proteínas de Choque Térmico/genética , Calor , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Femenino , Técnicas de Inactivación de Genes , Proteínas de Choque Térmico/metabolismo , Masculino , Pupa/crecimiento & desarrollo
14.
Proc Biol Sci ; 287(1940): 20202561, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33290677

RESUMEN

Climate change is not only causing steady increases in average global temperatures but also increasing the frequency with which extreme heating events occur. These extreme events may be pivotal in determining the ability of organisms to persist in their current habitats. Thus, it is important to understand how quickly an organism's heat tolerance can be gained and lost relative to the frequency with which extreme heating events occur in the field. We show that the California mussel, Mytilus californianus-a sessile intertidal species that experiences extreme temperature fluctuations and cannot behaviourally thermoregulate-can quickly (in 24-48 h) acquire improved heat tolerance after exposure to a single sublethal heat-stress bout (2 h at 30 or 35°C) and then maintain this improved tolerance for up to three weeks without further exposure to elevated temperatures. This adaptive response improved survival rates by approximately 75% under extreme heat-stress bouts (2 h at 40°C). To interpret these laboratory findings in an ecological context, we evaluated 4 years of mussel body temperatures recorded in the field. The majority (approx. 64%) of consecutive heat-stress bouts were separated by 24-48 h, but several consecutive heat bouts were separated by as much as 22 days. Thus, the ability of M. californianus to maintain improved heat tolerance for up to three weeks after a single sublethal heat-stress bout significantly improves their probability of survival, as approximately 33% of consecutive heat events are separated by 3-22 days. As a sessile animal, mussels likely evolved the capability to rapidly gain and slowly lose heat tolerance to survive the intermittent, and often unpredictable, heat events in the intertidal zone. This adaptive strategy will likely prove beneficial under the extreme heat events predicted with climate change.


Asunto(s)
Aclimatación , Respuesta al Choque Térmico , Calor , Mytilus/fisiología , Animales , Temperatura Corporal , California , Cambio Climático , Ecosistema , Estaciones del Año , Temperatura , Termotolerancia
15.
Am Nat ; 194(3): 344-355, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31553209

RESUMEN

A fitness benefit of phenotypic plasticity is the ability of an organism to survive short-term, deleterious environmental fluctuations. Yet the influence of selection on plasticity in modulating shifts in phenotypic traits remains unclear. Short-term phenotypic plasticity in thermal tolerance traits is attained by exposure to sublethal hot or cold temperatures (i.e., the hardening response). Heat hardening is expected to buffer organisms from the unpredictability of extreme thermal fluctuations in the environment so as to minimize interruptions in activity and enhance survival. However, exposure to sublethal temperatures might entail other phenotypic costs that constrain or inhibit the prolonged use of hardening responses across longer timescales. Here we estimated the onset of the heat hardening response, physiological and behavioral shifts during heat hardening, and geographic variation in heat hardening using tree lizards (Urosaurus ornatus). Peak heat hardening occurred 6 h after exposure to sublethal temperatures. We found that both preferred body temperatures and locomotor performance diminished following exposure to sublethal temperatures, and performance levels did not approach preexposure levels until after the peak hardening response. We also found support for intraspecific variation in the hardening response along an environmental gradient, where populations in more thermally variable environments exhibited stronger plastic responses and populations with higher baseline heat tolerances exhibited weaker plastic responses. Sublethal temperature exposure might induce adaptive plasticity in thermal tolerance; however, we find that these responses entail other phenotypic shifts that might curtail chronic reliance on plasticity in thermal traits as a mechanism of responding to changes in thermal environments induced by climate warming.


Asunto(s)
Adaptación Fisiológica/fisiología , Calor , Lagartos/fisiología , Aclimatación/fisiología , Animales , Arizona , Temperatura Corporal , Femenino , Locomoción/fisiología , Masculino
16.
J Therm Biol ; 80: 172-177, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30784483

RESUMEN

Reproduction is strongly influenced by environmental temperature in insects. At high temperature, mating success could be influenced not only by basal (non-inducible) thermotolerance but also by inducible plastic responses. Here, mating success at high temperature was tested in flies carrying contrasting genotypes of heat resistance in Drosophila melanogaster. The possible heat-hardening effect was tested. Mating success did not differ between heat-resistant and heat-sensitive genotypes when tested both at high (33 °C) and benign (25 °C) temperature, independently of the heat-hardening status. Importantly, heat-hardening pre-treatment increased in a 70% the number of matings at 33 °C in a mass-mating experiment. Further, mating latency at 33 °C was shorter with heat hardening than without it in single-pair assays Heat-hardening had previously been showed to improve short-term thermotolerance in many organisms including Drosophila, and the present results show that heat hardening also improve mating success at elevated temperature. Previous exposures to a mild heat stress improve short-term mating success as a plastic response of ecological relevance. Such heat-hardening effects on mating success should be relevant for predicting potential evolutionary responses to any possible current scenery of global warming, as well as in sterile insect release programs for pest control in elevated temperature environments.


Asunto(s)
Drosophila melanogaster/fisiología , Calor , Termotolerancia , Animales , Femenino , Masculino , Reproducción
17.
Pest Manag Sci ; 74(6): 1335-1345, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29193807

RESUMEN

BACKGROUND: Increasing climatic average temperatures and variability elicit various insect physiological responses that affect fitness and survival and may influence subsequent trophic interactions in agroecosystems. In this background, we investigated short- and long-term plastic responses to temperature of the laboratory-reared stemborer Chilo partellus and its larval endoparasitoid Cotesia flavipes. RESULTS: Rapid cold- and heat-hardening effects in C. partellus larvae, pupae and adults and C. flavipes adults were highly significant (P < 0.001). High-temperature acclimation improved critical thermal limits and heat knockdown time in C. partellus larvae and C. flavipes adults, respectively. Low-temperature acclimation enhanced the supercooling point in C. flavipes and the chill coma recovery time in both C. partellus larvae and C. flavipes adults. CONCLUSION: The results of this study suggest that thermal plasticity may enhance the survival of these two species when they are subjected to lethal low and high temperatures. However, C. partellus appeared to be more plastic than C. flavipes. These results have three major implications: (1) C. partellus may inhabit slightly warmer environments than C. flavipes, suggesting a potential mismatch in biogeography; (2) host-parasitoid relationships are complex and are probably trait dependent, and (3) host-parasitoid differential thermal plastic responses may offset biocontrol efficacy. These results may help inform biocontrol decision making under conditions of global change. © 2017 Society of Chemical Industry.


Asunto(s)
Cambio Climático , Interacciones Huésped-Parásitos , Mariposas Nocturnas/parasitología , Avispas/fisiología , Animales , Femenino , Larva/crecimiento & desarrollo , Larva/parasitología , Larva/fisiología , Mariposas Nocturnas/crecimiento & desarrollo , Pupa/crecimiento & desarrollo , Pupa/parasitología , Pupa/fisiología , Temperatura , Avispas/crecimiento & desarrollo
18.
Artículo en Inglés | MEDLINE | ID: mdl-28454925

RESUMEN

Some insect taxa from polar or temperate habitats have shown cross-tolerance for multiple stressors but tropical insect taxa have received less attention. Accordingly, we considered adult flies of a tropical drosophilid-Zaprionus indianus for testing direct as well as cross-tolerance effects of rapid heat hardening (HH), desiccation acclimation (DA) and starvation acclimation (SA) after rearing under warmer and drier season specific simulated conditions. We observed significant direct acclimation effects of HH, DA and SA; and four cases of cross-tolerance effects but no cross-tolerance between desiccation and starvation. Cross-tolerance due to heat hardening on desiccation showed 20% higher effect than its reciprocal effect. There is greater reduction of water loss in heat hardened flies (due to increase in amount of cuticular lipids) as compared with desiccation acclimated flies. However, cross-tolerance effect of SA on heat knockdown was two times higher than its reciprocal. Heat hardened and desiccation acclimated adult flies showed substantial increase in the level of trehalose and proline while body lipids increased due to heat hardening or starvation acclimation. However, maximum increase in energy metabolites was stressor specific i.e. trehalose due to DA; proline due to HH and total body lipids due to SA. Rapid changes in energy metabolites due to heat hardening seem compensatory for possible depletion of trehalose and proline due to desiccation stress; and body lipids due to starvation stress. Thus, observed cross-tolerance effects in Z. indianus represent physiological changes to cope with multiple stressors related to warmer and drier subtropical habitats.


Asunto(s)
Aclimatación/fisiología , Drosophila/fisiología , Metabolismo Energético , Trehalosa/metabolismo , Animales , Drosophila/metabolismo , Ecosistema , Calor , Pigmentación/fisiología , Estaciones del Año , Inanición , Estrés Fisiológico
19.
Evolution ; 49(4): 676-684, 1995 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28565130

RESUMEN

We investigated the heat tolerance of adults of three replicated lines of Drosophila melanogaster that have been evolving independently by laboratory natural selection for 15 yr at "nonextreme" temperatures (18°C, 25°C, or 28°C). These lines are known to have diverged in body size and in the thermal dependence of several life-history traits. Here we show that they differ also in tolerance of extreme high temperature as well as in induced thermotolerance ("heat hardening"). For example, the 28°C flies had the highest probability of surviving a heat shock, whereas the 18°C flies generally had the lowest probability. A short heat pretreatment increased the heat tolerance of the 18°C and 25°C lines, and the threshold temperature necessary to induce thermotolerance was lower for the 18°C line than for the 25°C line. However, neither heat pretreatment nor acclimation to different temperatures influenced heat tolerance of the 28°C line, suggesting the loss of capacity for induced thermotolerance and for acclimation. Thus, patterns of tolerance of extreme heat, of acclimation, and of induced thermotolerance have evolved as correlated responses to natural selection at nonextreme temperatures. A genetic analysis of heat tolerance of a representative replicate population each from the 18°C and 28°C lines indicates that chromosomes 1, 2, and 3 have significant effects on heat tolerance. However, the cytoplasm has little influence, contrary to findings in an earlier study of other stocks that had been evolving for 7 yr at 14°C versus 25°C. Because genes for heat stress proteins (hsps) are concentrated on chromosome 3, the potential role of hsps in the heat tolerance and of induced thermotolerance in these naturally selected lines is currently unclear. In any case, species of Drosophila possess considerable genetic variation in thermal sensitivity and thus have the potential to evolve rapidly in response to climate change; but predicting that response may be difficult.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA