Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 15165, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956434

RESUMEN

This paper aims to study the natural convective magneto-hydrodynamic flow of fluid through vertical concentric annuli with iso-flux heating under the conditions of constant internal heat absorption and an induced magnetic field. By solving the set of dimensionless coupled governing equations, we were able to obtain exact expressions for the temperature field, velocity field, and induced magnetic field. We also managed to derive the formulas for skin friction, mass flux, and induced current density. We also examined the effects of non-dimensional parameters on skin friction and mass flux. For easy comprehension and interpretation, the results are provided graphically and in tabular form. The heat absorption parameter, the induced current density, the induced magnetic field, and velocity exhibit a negative trend as the Hartmann number (Ha) value increases. The induced magnetic field has the effect of raising both the induced current density and velocity profile. It is found that, when a fluid absorbs heat, the heat absorption parameter experiences reverse flow. For the heat-absorbing fluids, the radii ratio has the effect of increasing velocity, induced magnetic field, and induced current density. The numerical values of skin friction and mass flux at cylindrical walls increase (decrease) with increasing heat absorption parameter and generally it has decreasing tendency with increasing Hartmann number.

2.
Carbohydr Polym ; 328: 121729, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220347

RESUMEN

Solar-driven evaporation technology could significantly relieve the fresh-water crisis in the world. However, several problems, such as poor structural stability, low photothermal conversion capacity, and single heat source of traditional evaporators limited the promotion of fresh-water production efficiency. Herein, inspired by tree transpiration, we report a hydrophilic three-dimensional (3D) cellulose-based evaporator similar to the root of a tree, which can pump the bottom water to the evaporation surface for vapor generation. The aldehyde-based cellulose nanocrystals/ethylene imine polymer (ACP) aerogel was developed through Schiff base reaction to enhance the chain entangle capacity of the cellulose nanocrystals (CNCs) aerogel in water. Coating the ACP aerogel with lignin-derived photothermal material created the double-layered solar-driven evaporator (ACP-7LM), achieving a remarkable surface temperature of 35.9 °C in water under 1 sun irradiation for 1 h. The ACP-7LM exhibited an impressive evaporation rate of 1.60 kg m-2 h-1, leveraging its structural stability and excellent photothermal conversion. Increasing the cold evaporation surface (adjusting exposure height from 0 cm to 4 cm) of ACP-7LM aerogel maintained a lower temperature compared to ambient temperature on the side surface during evaporation, which harvest heat energy from environment and minimize energy loss. This enhanced environmental heat absorption boosted the ACP-7LM's evaporation rate to 3.76 kg m-2 h-1, a 2.35-fold increase over the ACP-7LM (0 cm). This solar-driven evaporator offers an efficient, innovative approach to elevate evaporation rates and address the global water crisis by simultaneously enhancing heat absorption capacity and photothermal conversion efficiency.

3.
Heliyon ; 9(7): e17669, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37483737

RESUMEN

A mathematical model is presented to analyze the magnetohydrodynamic (MHD) convective flow in a rectangular enclosure. Earlier studies on the Tiwai-Das volume fraction nanofluid model did not consider the Buongiorno nanofluid model. This is the focus of the present analysis which examines the laminar mixed convection magnetohydrodynamic flow of a nanofluid in a differentially heated rectangular enclosure with complex boundary conditions under an inclined magnetic field. Buongiorno's two-component nanofluid model is employed, which incorporates the effects of Brownian motion and thermophoretic diffusion of nanoparticles. Magnetic nanofluids have considerable potential for enhancing transport processes in energy systems such as hybrid fuel cells. The study is essential with heat generation/absorption effects. Additionally, the work is highlighted by the general case of an oblique (inclined) magnetic field. The conservation equations for mass, primary and secondary momentum, energy, and nanoparticle concentration with wall boundary conditions are dimensionless using appropriate scaling transformations. A finite-difference computational scheme known as the Harlow-Welch Marker and Cell (MAC) method is employed to solve the dimensionless nonlinear coupled boundary value problem. A mesh independence study is included. Graphical plots are presented for the impact of key control parameters on streamline contours, isotherm contours, iso-concentration (nanoparticle mass) contours, and local Nusselt number. With heat sink (absorption), the Nusselt number is enhanced in magnitude whereas it is suppressed with heat generation since there is a heat reduction transmitted to the boundary. The configurations of streamlines, isotherms, and iso-concentrations are mostly invariant to magnetic field direction changes. The obtained results show interesting behaviors of the flow and thermal fields, which mainly involve the effect of Brownian motion and thermophoresis parameters, as well as unsteady regimes, depending on specific values of the Schmidt number, Richardson number, and Prandtl numbers. Increasing the Schmidt number induces a contraction in the central cooler zone in the enclosure and also reduces the iso-concentration magnitudes in the central region across the enclosure. The core region of the enclosure heats up as the thermophoresis and Brownian motion parameters rise, pushing the previously cooler top and bottom wall zones further away from the center. There is also a decrease in iso-concentration magnitudes in particular at the upper and lower boundaries at higher values of Brownian motion and thermophoresis parameters. At decreasing buoyancy ratios, the left vortex cell first decelerates while the right vortex cell accelerates. However, when the buoyancy ratio increases, the left vortex cell streamlines magnitudes increase with a contraction in vortex size, while the right cell develops. A Very minor alteration is observed in the isotherm and iso-concentration contours with an increasing buoyancy ratio. When the Richardson number increases, the vortex cell structures shift from a strong circulation cell on the left to a weaker cell on the right, resulting in reverse distribution. With the rising Richardson number, significant cooling is also caused in the core zone, as well as a drop in iso-concentrations, with the original dual low-concentration upper and lower zones merging into a single center zone. The original symmetric left and right vortex cells are gradually twisted diagonally towards the right wall as the magnetic field increases, yet the stronger right cell and the weaker left cell are maintained.

4.
Polymers (Basel) ; 15(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37242860

RESUMEN

Polyurethane rigid foam is a widely used insulation material, and the behavior characteristics and heat absorption performance of the blowing agent used in the foaming process are key factors that affect the molding performance of this material. In this work, the behavior characteristics and heat absorption of the polyurethane physical blowing agent in the foaming process were studied; this is something which has not been comprehensively studied before. This study investigated the behavior characteristics of polyurethane physical blowing agents in the same formulation system, including the efficiency, dissolution, and loss rates of the physical blowing agents during the polyurethane foaming process. The research findings indicate that both the physical blowing agent mass efficiency rate and mass dissolution rate are influenced by the vaporization and condensation process of physical blowing agent. For the same type of physical blowing agent, the amount of heat absorbed per unit mass decreases gradually as the quantity of physical blowing agent increases. The relationship between the two shows a pattern of initial rapid decrease followed by a slower decrease. Under the same physical blowing agent content, the higher the heat absorbed per unit mass of physical blowing agent, the lower the internal temperature of the foam when the foam stops expanding. The heat absorbed per unit mass of the physical blowing agents is a key factor affecting the internal temperature of the foam when it stops expanding. From the perspective of heat control of the polyurethane reaction system, the effects of physical blowing agents on the foam quality were ranked in order from good to poor as follows: HFC-245fa, HFC-365mfc, HFCO-1233zd(E), HFO-1336mzzZ, and HCFC-141b.

5.
Nanomaterials (Basel) ; 12(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36364647

RESUMEN

Population growth and the current global weather patterns have heightened the need to optimize solar energy harvesting. Solar-powered water filtration, electricity generation, and water heating have gradually multiplied as viable sources of fresh water and power generation, especially for isolated places without access to water and energy. The unique thermal and optical characteristics of carbon nanotubes (CNTs) enable their use as efficient solar absorbers with enhanced overall photothermal conversion efficiency under varying solar light intensities. Due to their exceptional optical absorption efficiency, low cost, environmental friendliness, and natural carbon availability, CNTs have attracted intense scientific interest in the production of solar thermal systems. In this review study, we evaluated CNT-based water purification, thermoelectric generation, and water heating systems under varying solar levels of illumination, ranging from domestic applications to industrial usage. The use of CNT composites or multilayered structures is also reviewed in relation to solar heat absorber applications. An aerogel containing CNTs was able to ameliorate water filtering performance at low solar intensities. CNTs with a Fresnel lens improved thermoelectric output power at high solar intensity. Solar water heating devices utilizing a nanofluid composed of CNTs proved to be the most effective. In this review, we also aimed to identify the most relevant challenges and promising opportunities in relation to CNT-based solar thermal devices.

6.
Materials (Basel) ; 15(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36079401

RESUMEN

In this paper, phase-change material (PCM) and ceramsite were used to increase the heat resistance of the asphalt mixture. The ceramsite asphalt mixture with PCM can bring a specific cooling effect to the road surface and alleviate the rapid deterioration at high temperature. Two phase-change materials, PCM-43 and PCM-48, were compared and selected as the heat absorption material of the asphalt mixture. It is found that PCM-43 has better thermal stability, temperature regulation performance, higher enthalpy value, and a less adverse effect on the rheological properties of asphalt. According to the road performance of the asphalt mixture, it suggests that the maximum content of ceramsite is 40%. The specific heat capacity of asphalt mixtures was studied by the method of the insulation bucket test, and the thermal conductivity coefficient of asphalt mixtures was tested by a thermal conductivity instrument. The results show that the specific heat capacity and thermal conductivity of the asphalt mixture can be reduced by adding PCM and ceramsite. The effect of ceramsite asphalt concrete with PCM on the temperature field of road structure was further analyzed by finite element method. Due to the thermal resistance of ceramsite in the upper layer, the cooling range and depth in the middle and lower surface layers can be improved. Meanwhile, the heat absorption of phase-change material can alleviate the heating phenomenon of the upper layer. Therefore, ceramsite asphalt concrete with PCM is effective for decreasing the high temperatures in the asphalt pavements.

7.
Membranes (Basel) ; 12(6)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35736334

RESUMEN

In this paper, an ammonia decomposition membrane reactor is applied to a solar heat absorption system, and thermodynamic optimization is carried out according to the usage scenarios. First, a model of an ammonia decomposition solar heat absorption system based on the membrane reactor is established by using finite time thermodynamics (FTT) theory. Then, the three-objective optimization with and the four-objective optimization without the constraint of the given heat absorption rate are carried out by using the NSGA-II algorithm. Finally, the optimized performance objectives and the corresponding design parameters are obtained by using the TOPSIS decision method. Compared with the reference system, the TOPSIS optimal solution for the three-objective optimization can reduce the entropy generation rate by 4.8% and increase the thermal efficiency and energy conversion rate by 1.5% and 1.4%, respectively. The optimal solution for the four-objective optimization can reduce the heat absorption rate, entropy generation rate, and energy conversion rate by 15.5%, 14%, and 8.7%, respectively, and improve the thermal efficiency by 15.7%. The results of this paper are useful for the theoretical study and engineering application of ammonia solar heat absorption systems based on membrane reactors.

8.
Molecules ; 26(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34770738

RESUMEN

This research work aims to scrutinize the mathematical model for the hybrid nanofluid flow in a converging and diverging channel. Titanium dioxide and silver TiO2 and Ag are considered as solid nanoparticles while blood is considered a base solvent. The couple-stress fluid model is essentially use to describe the blood flow. Therefore, the couple-stress term was used in the recent study with the existence of a magnetic field and a Darcy-Forchheiner porous medium. The heat absorption/omission and radiation terms were also included in the energy equation for the sustainability of drug delivery. An endeavor was made to link the recent study with the applications of drug delivery. It has already been revealed by the available literature that the combination of TiO2 with any other metal can destroy cancer cells more effectively than TiO2 separately. Both the walls are stretchable/shrinkable, whereas flow is caused by a source or sink with α as a converging/diverging parameter. Governing equations were altered into the system of non-linear coupled equations by using the similarity variables. The homotopy analysis method (HAM) was applied to obtain the preferred solution. The influences of the modeled parameters have been calculated and displayed. The confrontation of wall shear stress and hybrid nanofluid flow increased as the couple stress parameter rose, which indicates an improvement in the stability of the base fluid (blood). The percentage (%) increase in the heat transfer rate with the variation of nanoparticle volume fraction was also calculated numerically and discussed theoretically.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hemodinámica , Hidrodinámica , Modelos Teóricos , Nanopartículas , Nanotecnología/métodos , Algoritmos , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Plata , Estrés Mecánico
9.
PeerJ ; 7: e6648, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30941273

RESUMEN

Butterflies can directly absorb heat from the sun via their wings to facilitate autonomous flight. However, how is the heat absorbed by the butterfly from sunlight stored and transmitted in the wing? The answer to this scientific question remains unclear. The butterfly Tirumala limniace (Cramer) is a typical heat absorption insect, and its wing surface color is only composed of light and dark colors. Thus, in this study, we measured a number of wing traits relevant for heat absorption including the thoracic temperature at different light intensities and wing opening angles, the thoracic temperature of butterflies with only one right fore wing or one right hind wing; In addition, the spectral reflectance of the wing surfaces, the thoracic temperature of butterflies with the scales removed or present in light or dark areas, and the real-time changes in heat absorption by the wing surfaces with temperature were also measured. We found that high intensity light (600-60,000 lx) allowed the butterflies to absorb more heat and 60-90° was the optimal angle for heat absorption. The heat absorption capacity was stronger in the fore wings than the hind wings. Dark areas on the wing surfaces were heat absorption areas. The dark areas in the lower region of the fore wing surface and the inside region of the hind wing surface were heat storage areas. Heat was transferred from the heat storage areas to the wing base through the veins near the heat storage areas of the fore and hind wings.

10.
Materials (Basel) ; 11(12)2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30563148

RESUMEN

While traditional noble metal (Ag, Au, and Cu) nanoparticles are well known for their plasmonic properties, they typically only absorb in the ultraviolet and visible regions. The study of metal hexaborides, lanthanum hexaboride (LaB6) in particular, expands the available absorbance range of these metals well into the near-infrared. As a result, LaB6 has become a material of interest for its energy and heat absorption properties, most notably to those trying to absorb solar heat. Given the growing popularity of LaB6, this review focuses on the advances made in the past decade with respect to controlling the plasmonic properties of LaB6 nanoparticles. This review discusses the fundamental structure of LaB6 and explains how decreasing the nanoparticle size changes the atomic vibrations on the surface and thus the plasmonic absorbance band. We explain how doping LaB6 nanoparticles with lanthanide metals (Y, Sm, and Eu) red-shifts the absorbance band and describe research focusing on the correlation between size dependent and morphological effects on the surface plasmon resonance. This work also describes successes that have been made in dispersing LaB6 nanoparticles for various optical applications, highlighting the most difficult challenges encountered in this field of study.

11.
Burns ; 42(3): 548-55, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26655278

RESUMEN

OBJECTIVE: This study aimed to further explore heat dissipation by blood circulation and airway tissue heat absorption in an inhalational thermal injury model. METHODS: Twelve adult male Beagle dogs were divided into four groups to inhale heated air for 10min: the control group, group I (100.5°C), group II (161.5°C), and group III (218°C). The relative humidity and temperature of the inhaled heated air were measured in the heating tube and trachea, as were blood temperatures and flow velocities in both common jugular veins. Formulas were used to calculate the total heat quantity reduction of the heated air, heat dissipation by the blood, and airway tissue heat absorption. RESULTS: The blood temperatures of both the common jugular veins increased by 0.29°C±0.07°C to 2.96°C±0.24°C and the mean blood flow volume after injury induction was about 1.30-1.74 times greater than before injury induction. The proportions of heat dissipated by the blood and airway tissue heat absorption were 68.92%±14.88% and 31.13%±14.87%, respectively. CONCLUSIONS: The heat dissipating ability of the blood circulation was demonstrated and improved upon along with tissue heat absorption owing to increased regional blood flow.


Asunto(s)
Regulación de la Temperatura Corporal , Quemaduras por Inhalación , Venas Yugulares , Flujo Sanguíneo Regional , Frecuencia Respiratoria , Animales , Circulación Sanguínea , Modelos Animales de Enfermedad , Perros , Calor , Masculino , Tráquea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA