Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.904
Filtrar
1.
Animals (Basel) ; 14(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39272260

RESUMEN

We aimed to investigate the impact of heat stress (HS) on the expression of tight junction (TJ) proteins and the interaction between genes affecting intestinal barrier function using transcriptomics in the porcine jejunum. Twenty-four barrows (crossbred Yorkshire × Landrace × Duroc; average initial body weight, 56.71 ± 1.74 kg) were placed in different temperatures (normal temperature [NT]; HS) and reared for 56 days. At the end of the experiment, jejunal samples were collected from three pigs per treatment for transcriptome and reverse-transcription quantitative polymerase chain reaction (RT-qPCR) analyses. We identified 43 differentially expressed genes, involving five Kyoto Encyclopedia of Genes and Genomes pathways, eight molecular functions, seven cellular components (CCs), and nine biological processes, using gene ontology enrichment analysis. Genes associated with the actin cytoskeleton, filament-binding pathways, and TJ proteins were selected and analyzed by RT-qPCR. Significant differences in relative mRNA expression showed that downregulated genes in the HS group included ZO1, CLDN1, OCLN, PCK1, and PCK2, whereas ACTG2, DES, MYL9, MYLK, TPM1, TPM2, CNN1, PDLIM3, and PCP4 were upregulated by HS (p < 0.05). These findings indicate that HS in growing-finishing pigs induces depression in gut integrity, which may be related to genes involved in the actin cytoskeleton and filaments of CC.

2.
Animals (Basel) ; 14(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39272358

RESUMEN

Dairy ruminants provide a major part of the livestock and agriculture sectors. Due to the increase in world population and the subsequent increase in dairy product demands, the dairy sector has been intensified. Dairy farming intensification and the subsequent increase in animal nutritional demands and the increase in the average global temperature as well have subjected animals to various stress conditions that impact their health and welfare. Various management practices and nutritional strategies have been proposed and studied to alleviate these impacts, especially under heat stress, as well as during critical periods, like the transition period. Some of the nutritional interventions to cope with stress factors and ensure optimal health and production are the inclusion of functional fatty acids and amino acids and feed additives (minerals, prebiotics, probiotics, essential oils and herbs, phytobiotics, enzymes, etc.) that have been proven to regulate animals' metabolism and improve their antioxidant status and immune function. Thus, these nutritional strategies could be the key to ensuring optimum growth, milk production, and reproduction efficiency. This review summarizes and highlights key nutritional approaches to support the remarkable metabolic adaptations ruminants are facing during the transition period and to reduce heat stress effects and evaluate their beneficial effects on animal physiology, performance, health, as well as welfare.

3.
Animals (Basel) ; 14(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39272369

RESUMEN

To investigate the possible protective effect of hesperidin on intestinal damage caused by high-temperature heat stress in yellow-feathered broilers, 960 broilers aged 21 days were randomly divided into four groups: HT, HT300, HT450, and HT600, with each group receiving different amounts of hesperidin supplementation (0, 300, 450, and 600 mg/kg). The dietary supplementation of hesperidin could mitigate the elevation of corticosterone (CORT) and adrenocorticotropic hormone (ATCH) levels in serum from yellow-feathered broilers induced by heat stress. The supplementation of 300 mg/kg and 450 mg/kg of hesperidin reduced crypt depth and increased the V/C ratio in the small intestine compared to the HT group. The dietary supplementation of hesperidin decreased endotoxin and D-lactic acid levels in the blood, and dietary supplementation of 300 mg/kg of hesperidin increased the expression of claudin-1 and ZO-1 mRNA in the jejunum compared with the HT group. Furthermore, the dietary supplementation of 300 mg/kg of hesperidin decreased serum IL-1ß and IL-6 levels. In comparison, supplementation with 300 mg/kg and 450 mg/kg of hesperidin decreased serum TNF-α levels in yellow-feathered broilers compared to the HT group. Moreover, the dietary supplementation of hesperidin decreased NF-κB mRNA levels. Overall, these data suggest that dietary supplementation with hesperidin potentially improves intestinal injury caused by heat stress in yellow-feathered broilers.

4.
Animals (Basel) ; 14(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39272371

RESUMEN

(1) Background: Heat stress detrimentally restricted economic growth in dairy production. In particular, the cooling mechanism of the spraying system effectively reduced both environmental and shell temperatures. This study was designed to investigate the underlying modulatory mechanism of an automatic cooling system in alleviating heat-stressed dairy cows. (2) Methods: A total of 1208 multiparous dairy cows was randomly allocated into six barns, three of which were equipped with automatic sprinklers (SPs), while the other three were considered the controls (CONs). Each barn was considered a replicate. (3) Results: Body temperatures and milk somatic cell counts significantly decreased, while DMI, milk yield, and milk fat content significantly increased under SP treatment. Rumen fermentability was enhanced, embodied by the increased levels of total VFA, acetate, propionate, and butyrate after SP treatment. The rumen microbiota results showed the relative abundances of fiber-degrading bacteria, including the Fibrobacters, Saccharofermentans, Lachnospira, Pseudobutyrivibrio, Selenomonas, and Succinivibrio, which significantly increased after receiving the SP treatment. (4) Conclusions: This study demonstrated that SP effectively alleviated heat stress and improved production performances and milk quality through modulating the rumen microbiota composition and fermentation function of dairy cows.

5.
Nutrients ; 16(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39275346

RESUMEN

Heat stress due to climate warming can significantly affect the synthesis of sex hormones in male adolescents, which can impair the ability of the hypothalamus to secrete gonadotropin-releasing hormone on the hypothalamic-pituitary-gonadal axis, which leads to a decrease in luteinizing hormone and follicle-stimulating hormone, which ultimately negatively affects spermatogenesis and testosterone synthesis. For optimal spermatogenesis, the testicular temperature should be 2-6 °C lower than body temperature. Heat stress directly affects the testes, damaging them and reducing testosterone synthesis. Additionally, chronic heat stress abnormally increases the level of aromatase in Leydig cells, which increases estradiol synthesis while decreasing testosterone, leading to an imbalance of sex hormones and spermatogenesis failure. Low levels of testosterone in male adolescents lead to delayed puberty and incomplete sexual maturation, negatively affect height growth and bone mineral density, and can lead to a decrease in lean body mass and an increase in fat mass. In order for male adolescents to acquire healthy reproductive capacity, it is recommended to provide sufficient nutrition and energy, avoid exposure to heat stress, and provide foods and supplements to prevent or repair testosterone reduction, germ cell damage, and sperm count reduction caused by heat stress so that they can enter a healthy adulthood.


Asunto(s)
Hormonas Esteroides Gonadales , Respuesta al Choque Térmico , Reproducción , Masculino , Adolescente , Humanos , Reproducción/fisiología , Hormonas Esteroides Gonadales/metabolismo , Respuesta al Choque Térmico/fisiología , Testosterona/sangre , Espermatogénesis , Testículo/crecimiento & desarrollo , Maduración Sexual/fisiología
6.
Appl Ergon ; 122: 104388, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39305687

RESUMEN

BACKGROUND: Explosive ordnance disposal (EOD) technicians may be required to work in hot, humid environments while wearing heavy protective clothing. We investigated the ability of an ice vest to attenuate physiological strain and subsequently extend work tolerance. METHODS: Eight male participants (24.3 ± 4.1 yr, 51.9 ± 4.6 mL kg-1 min-1) walked (4.5 km h-1) in simulated hot and humid conditions (35 °C; 50% relative humidity). Participants wore either an EOD suit (CON) or EOD and ice vest (IV). Heart rate, core and skin temperature were recorded continuously. RESULTS: Participants walked longer in IV compared to CON (8.1 ± 7.4 min, p < .05). Over 90% of trials were terminated based on participants reaching 90% of their maximum heart rate. IV resulted in cooled skin (p < .001) and a physiologically negligible change in core temperature (p < .001). A condition by time interaction was identified for heart rate (p < .001), with a lower rate of rise in the IV condition. CONCLUSIONS: The cardiovascular inefficiency that limited performance was attenuated in the IV condition. The ice vest facilitated heat loss from the periphery; thus, the observed reduction in heart rate may reflect the preservation of central blood volume. The results identify the efficiency of a simple, inexpensive ice vest to assist EOD technicians working in the heat.

7.
Fish Shellfish Immunol ; : 109913, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306215

RESUMEN

Our study aims to examine the changes of long-term high temperature on the mortality and health status of spotted seabass (Lateolabrax maculatus), as well as to screen suitable biomarkers to determine whether the spotted seabass is under heat stress. In this study, 360 juvenile spotted seabass were evenly distributed into three temperature-controlled systems at 27°C (N, normal temperature), 31°C (M, moderate temperature), and 35°C (H, high temperature) for an 8-week aquaculture experiment. The results revealed that 35°C water temperature significantly increased the mortality and the MDA content in tissues (P < 0.05). Meanwhile, 35°C water temperature significantly increased the activity of SOD enzyme and T-AOC capacity in tissues, as well as the expression of hsp60, hsp70, and hsp90 (P < 0.05). Additionally, the expression of nrf2, il1ß, il8, caspase3, caspase9, and bax in the liver significantly increased (P < 0.05), while the expression of keap1, il10, tgfß, and bcl2 decreased significantly (P < 0.05). These results indicate that 35°C water temperature induces oxidative stress in spotted seabass, leading to tissue oxidative damage, promoting inflammation and apoptosis in liver, and increasing mortality. However, the organism compensates by heightening its antioxidant capacity via the Nrf2-Keap1 signaling pathway and inducing high expression of heat shock proteins for self-protection. Furthermore, the alterations in the mRNA level of hsp70 and MDA content in the liver, muscle, and kidney can serve as indicators for evaluating spotted seabass under prolonged heat stress.

8.
Int J Biometeorol ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302453

RESUMEN

This study investigates the effect of dietary Bacillus subtilis and Lactobacillus on the growth performance, serum biochemistry, nutrient apparent digestibility, and cecum flora of broilers under heat stress (HS) and provides a theoretical basis for the application of probiotic additives to alleviate the stress of poultry under HS. A total of 200 Cobb broilers were randomly assigned to four replicates of 10 broilers in each of the five groups. The growth performance, serum biochemistry, nutrient apparent digestibility, and cecum flora of broilers were detected on the 28th, 35th, and 42nd days, respectively. Results revealed that HS can affect the growth performance and serum biochemical indexes of broilers, lowered the number of intestinal bifidobacteria and Lactobacillus, and increase the number of Escherichia coli in comparsion to the CON group. Compared with the HS group, the ADFI of HS broilers in the BS group and the combined group significantly increased (P < 0.05) at 22-28 days of age, and the serum calcium and phosphorus increased (P < 0.05) significantly at 42 days of age. Meanwhile, the number of Lactobacillus in the BS group and LAB group increased significantly at 42 days of age (P < 0.05). The number of Escherichia coli in the LAB group and combination group decreased significantly at 35 days of age (P < 0.01). The present study revealed that the addition of Bacillus subtilis or Lactobacillus to diets increased ADFI, increased probiotic counts, and lowered Escherichia coli counts in HS broilers, while probiotics alone work well.

9.
J Therm Biol ; 125: 103976, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39303460

RESUMEN

The study investigated the effects of embryonic thermal manipulation (TM) and post-hatch guanidinoacetic acid (GAA) supplementation on male broiler chickens exposed to chronic heat stress (HS). Ross 308 eggs (n = 710) were randomly assigned to control (37.8 °C, 56% RH) or TM (39.5 °C, 65% RH for 12 h/day from embryonic day 7-16) treatments. After hatching, chicks were further assigned to four dietary treatments (n = 12 birds/pen, 5 replicates/treatment): control, control with 1.2 g/kg GAA supplementation (CS), TM, and TM with 1.2 g/kg GAA supplementation (TMS). All birds were subjected to chronic HS (32-36 °C and 55% RH for 6 h/day) from day 28-42. Embryonic TM treatment decreased hatchability, hatching weight (HW), and facial temperature (FT). During the pre-HS period (days 1-28), no significant differences in feed conversion ratio (FCR) and mortality were observed, although the TM group exhibited the lowest body weight gain (BWG). Following HS exposure (days 29-42), the TMS group displayed significantly higher BWG than the control and CS groups. The TM and TMS groups also demonstrated significantly lower FCR and mortality rates during this period. Across the entire period (days 1-42), BWG was significantly higher in the TMS group compared to other groups. Furthermore, TM and TMS treatments were associated with lower mortality rates, improved FCR, better European Performance Efficiency Index (EPEI), and reduced abdominal fat deposition. The experimental treatments did not significantly affect intestinal morphology or most blood parameters, except triiodothyronine (T3), thyroxine (T4), and uric acid. Plasma concentrations of T3, T4, and uric acid were significantly lower in the TM and TMS groups compared to the control and CS treatments. The findings suggest that a combined strategy of embryonic TM and post-hatch dietary GAA supplementation may not only alleviate the detrimental effects of HS but also promote beneficial physiological responses in broiler chickens.

10.
Anim Nutr ; 18: 433-440, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39309971

RESUMEN

Pogostemon cablin essential oil (PEO), extracted from P. cablin, has anti-oxidant, anti-inflammatory, and anti-stress properties, as well as the ability to improve gastrointestinal digestion. This study aims to evaluate the effects of PEO on the performance, rumen epithelial morphology, and barrier function in heat-stressed beef cattle. Thirty-six male Jingjiang cattle at 18 months old were randomly assigned into four groups and fed a diet containing PEO at 0 (control), 50, 100, or 150 mg/kg in the feed concentrate (n = 9). All experimental cattle were fed under high temperature and humidity in summer for 60 days. The results indicated that 50 mg/kg of PEO treatment enhanced the average daily gain of beef cattle compared with the control group (P = 0.032). All PEO treatments reduced the diamine oxidase activity (P = 0.004) and malondialdehyde content (P = 0.008) in serum. In addition, the content of 70 kDa heat shock protein in the 100 mg/kg group was increased, and the activity of glutathione peroxidase and total antioxidant capacity in both 100 mg/kg and 150 mg/kg groups were enhanced compared to the control group (P < 0.05). More importantly, PEO treatment with 50 mg/kg enhanced the mRNA relative expressions of occludin in ruminal epithelia but decreased the mRNA relative expressions of c-Jun N-terminal kinase, P38 mitogen-activated protein kinases, caspase-3, Beclin1 (P < 0.05), and extremely significant declined the mRNA relative expressions of extracellular regulated protein kinases and ubiquitin-binding protein in contrast to the control group (P < 0.01). These findings indicated that dietary PEO supplementation might be favorable to improve growth performance and repairing damaged rumen epithelium of heat-stressed cattle by down-regulating the mitogen-activated protein kinase signaling pathway.

11.
J Anim Sci ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311692

RESUMEN

Heat stress with measurable effects in dairy cattle is a growing concern in temperate regions. Heat stress in temperate regions differs between environments with different geophysical characteristics. Microclimates specific to each environment were found to greatly impact at what level heat stress occurs and will occur in the future. The landlocked state of Baden-Württemberg, Germany, provides several different environments, hence, a good case-study. Temperature Humidity Index (THI) from 17 weather stations for the years 2003-2022 was calculated and milking yields from 22 farms for the years 2017-2022 were collected. The occurrences and evolving patterns of heat stress were analysed with use of a Temperature Humidity Index (THI), and the effect of heat stress on milk yield was analysed based on milking records from Automated Milking Systems (AMS). Daily average THI was calculated using hourly readings of relative humidity and ambient temperature, disregarding solar radiation and wind, as all animals were permanently stabled. Based on studies conducted in Baden-Württemberg and neighbouring regions, cited ahead in the section of Temperature Humidity Index, THI = 60 was the threshold for heat stress occurrence. Findings show that the heat stress period varied between stations from 64 to 120 days with THI ≥ 60 in a year. This aligns with yearly and summer averages, also steadily increasing from May to September. Length of heat stress period was found to increase 1 extra day every year. Extreme weather events such as heat waves did not increase the heat stress period of that year in length but increased the average THI. Milk yield was found to be significantly (α = 0.05) different between counties grouped into different zones according to heat stress severity and rate of increase in daily average THI. Future attempts at managing heat stress on dairy cattle farms in the temperate regions should account for microclimate, as geographical proximity does not mean that the increase in heat stress severity will be the same in the two neighbouring areas.

12.
Int J Biometeorol ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39297989

RESUMEN

Traditional climate classification and weather typing systems are not designed to understand and prevent heat illness, or to design effective cooling strategies during extreme heat. Thus, we developed the Heat Stress Compensability Classification (HSCC) combining open-source historical weather data (2005-2020) with biophysical modeling of a standard human, in the sun or shade, during peak city-specific hot hours on the top 10th percentile hottest days in 96 U.S. cities. Four categories of uncompensable heat stress (UHS)--which can result in rising core temperature--were established based on the relative constraints of dry and evaporative heat exchanges for achieving heat balance in proportion to constant metabolic heat production (112Wm-2). Results show that 88.7% of these peak-hot hours meet the UHS criterion, and 41% present a dry heat gain of 70 to 150Wm-2 while allowing a maximum evaporative loss between 90 and 140Wm-2. Evaporative heat loss constraints dominate the eastern U.S. Dry heat gain was widespread, yet particularly high in the south and southwest. Full shade reduces UHS frequency to 7.6%, highlighting the importance of quality shade access and accounting for radiative load in heat stress assessments. Although there are five distinct categories (one compensable and four UHS), the HSCC is dynamic and customizable, providing actionable information on thermal variations within a given category. These variations depict the reason for UHS (e.g., limited evaporative cooling) and, thus, how to concentrate cooling efforts, particularly at the limits of physiological adaptability. Findings facilitate developing targeted criteria for heat stress reduction with potential global applications.

13.
BMC Plant Biol ; 24(1): 874, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304829

RESUMEN

BACKGROUND: Global warming has greatly increased the impact of high temperatures on crops, resulting in reduced yields and increased mortality. This phenomenon is of significant importance to the rose flower industry because high-temperature stress leads to bud dormancy or even death, reducing ornamental value and incurring economic losses. Understanding the molecular mechanisms underlying the response and resistance of roses to high-temperature stress can serve as an important reference for cultivating high-temperature-stress-resistant roses. RESULTS: To evaluate the impact of high temperatures on rose plants, we measured physiological indices in rose leaves following heat stress. Protein and chlorophyll contents were significantly decreased, whereas proline and malondialdehyde (MDA) contents, and peroxidase (POD) activity were increased. Subsequently, transcriptomics and metabolomics analyses identified 4,652 common differentially expressed genes (DEGs) and 57 common differentially abundant metabolites (DAMs) in rose plants from four groups. Enrichment analysis showed that DEGs and DAMs were primarily involved in the mitogen-activated protein kinases (MAPK) signaling pathway, plant hormone signal transduction, alpha-linolenic acid metabolism, phenylpropanoid biosynthesis, and flavonoid biosynthesis. The combined analysis of the DEGs and DAMs revealed that flavonoid biosynthesis pathway-related genes, such as chalcone isomerase (CHI), shikimate O-hydroxycinnamoyl transferase (HCT), flavonol synthase (FLS), and bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase (DFR), were downregulated after heat stress. Moreover, in the MAPK signaling pathway, the expression of genes related to jasmonic acid exhibited a decrease, but ethylene receptor (ETR/ERS), P-type Cu + transporter (RAN1), ethylene-insensitive protein 2/3 (EIN2), ethylene-responsive transcription factor 1 (ERF1), and basic endochitinase B (ChiB), which are associated with the ethylene pathway, were mostly upregulated. Furthermore, heterologous overexpression of the heat stress-responsive gene RcHSP70 increased resistance to heat stress in Arabidopsis thaliana. CONCLUSION: The results of this study indicated that the flavonoid biosynthesis pathway, MAPK signaling pathway, and plant hormones may be involved in high-temperature resistance in roses. Constitutive expression of RcHSP70 may contribute to increasing high-temperature tolerance. This study provides new insights into the genes and metabolites induced in roses in response to high temperature, and the results provide a reference for analyzing the molecular mechanisms underlying resistance to heat stress in roses.


Asunto(s)
Respuesta al Choque Térmico , Metabolómica , Rosa , Rosa/genética , Rosa/metabolismo , Rosa/fisiología , Respuesta al Choque Térmico/genética , Perfilación de la Expresión Génica , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología
14.
Int J Biometeorol ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39249523

RESUMEN

The Intergovernmental Panel on Climate Change, IPCC predicts that hot seasons will get even hotter due to global climate change. There exists a critical dependence of human metabolic processes on temperature. Changes in thermal balance therefore, have an adverse effect on health because they raise body temperature, cause excessive sweating, and accelerate the rate of dehydration. Different nations and professional groups use different techniques to measure heat strain. This paper aims to review previous research conducted in the area of heat strain due to heat exposure among workers in Southeast Asia and also to profile mitigation strategies in North East India. Studies conducted between the years 2011 to 2023 in the evaluation of the health impacts of occupational heat stress were searched systematically using several sources of databases like PubMed, Google Scholar, Science Direct, Web of Science, Scopus, etc. It was noted that a greater proportion of previous research on evaluating physiological effects was carried out in controlled environments as opposed to real-world field settings. While such studies give us valuable insights into the relationship, applying the same methodology in the workplace may not be feasible. In India, very few research has been carried out on workplace heat stress, and even fewer have been done in North East India using physiological indicators. North East India is also affected by global climate change leading top more hotter days than before. The region of Northeast India, particularly Guwahati (Assam), has recently seen extreme heat waves during the sweltering summer months. With less literature available in this geographical location, studies with actual field-based settings are much needed to understand the occupational health impacts in this region. This review can formulate a suitable methodology for assessing the health impacts in working environment. This can also help the local health professionals to recognize the heat strain parameters that are acceptable worldwide, and use as pertinent indicators to scrutinize worker's health and develop preventive agendas as climate change advances.

15.
Theriogenology ; 230: 21-27, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39241577

RESUMEN

Heat shock can impair embryo formation, while growth factors, such as colony-stimulating factor 2 (CSF2), modulate embryonic development. This study evaluated the effect of heat shock between days 2.5 and 3, as well as the impact of CSF2 at day 5 on bovine embryos cultured in a serum-free in vitro medium. The focus was on blastocyst development, the number of blastomeres, DNA fragmentation (TUNEL-positive cells), and mitochondrial activity. Heat shock reduced the proportion of cleaved embryos that developed into blastocysts (P = 0.0603). The resultant blastocysts exhibited a reduced number and proportion of TUNEL-positive cells in the trophectoderm (P = 0.0270 and P = 0.0240, respectively) and in the entire embryo (P = 0.0029 and P = 0.0031, respectively). Additionally, mitochondrial activity was lower in blastocysts derived from heat-shocked embryos (P = 0.0150) and further reduced in embryos exposed to both heat shock and CSF2 (P = 0.0415). In conclusion, the exposure of cleaved embryos to heat shock reduced their development to the blastocyst stage. However, the resulting blastocysts showed decreased DNA fragmentation and mitochondrial activity.

16.
Gene ; : 148922, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244169

RESUMEN

AMPK is a key regulator of metabolism in eukaryotes across various pathways related to energy regulation. Although extensive investigations of AMPK have been conducted in mammals and some model organisms, research on AMPK in scallops is comparatively limited. In this study, three AMPK family genes (AiAMPKα, AiAMPKß and AiAMPKγ) in scallop Argopecten irradians irradians were identified through genome scanning. Structure prediction and phylogenetic analyses of AiAMPKs were performed to determine their structural features and evolutionary relationships. Spatiotemporal expression patterns of AiAMPKs at different developmental stages and in healthy adult tissues were analyzed to elucidate the function of AiAMPKs in bay scallops' growth and development. The spatiotemporally specific expression of AiAMPKs implied their important roles in growth and development of bay scallops. Heat stress experiment was performed to determine the regulations of AiAMPKs in four kinds of thermosensitive tissues. Expression profiles revealed distinct molecular mechanisms of AiAMPKs in different tissues in response to heat stress: significant down-regulations in mobile hemocytes, but dominant up-regulations occurring in stationary gills, mantles and hearts. Functional verification including knock-down of AiAMPKα and inhibition of AiAMPK was separately conducted in the thermotolerant tissue heart at the post-transcription and translation levels. The thermotolerant index Arrhenius break temperature (ABT) showed a significant decrease and the rate-amplitude product (RAP) peaked earlier in the individuals after RNAi targeting AiAMPKα, displaying an earlier transition to anaerobic metabolism under heat stress, indicating an impairing ability of aerobic metabolism. After AiAMPK inhibition, widespread down-regulations of genes in key energy metabolism pathways, RNA polymerase II-mediated transcription, and aminoacyl-tRNA synthesis pathways were obviously observed, revealing the post-translational inhibition of AiAMPK hindered cardiac energy metabolism, basal transcription and translation. Overall, our findings provide evidences for exploring the molecular mechanisms of energy regulation in thermotolerant traits in bay scallops under ongoing global warming.

17.
Geohealth ; 8(9): e2024GH001079, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39234599

RESUMEN

During the first two decades of the twenty-first century, we analyze the expansion of urban land cover, urban heat island (UHI), and urban pollution island (UPI) in the Houston Metropolitan Area (HMA) using land cover classifications derived from Landsat and land/aerosol products from NASA's Moderate Resolution Imaging Spectroradiometer. Our approach involves both direct utilization and fusion with in situ observations for a comprehensive characterization. We also examined how social vulnerability within the HMA changed during the study period and whether the synergy of UHI, UPI, and social vulnerability enhances environmental inequalities. We found that urban land cover within the HMA increased by 1,345.09 km2 and is accompanied by a 171.92 (73.93) % expansion of the daytime (nighttime) UHI. While the UPI experienced an overall reduction in particulate pollution, the magnitude of change is smaller compared to the surroundings. Further, the UPI showed localized enhancement in particulate pollution caused by increases in vehicular traffic. Our analysis found that the social vulnerability of the HMA urban regions increased during the study period. Overall, we found that the urban growth during the first two decades of the twenty-first century resulted in a synergy of UHI, UPI, and social vulnerability, causing an increase in environmental inequalities within the HMA.

18.
Cell Rep ; 43(9): 114642, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39240713

RESUMEN

Understanding molecular mechanisms of plant cellular response to heat stress will help to improve crop tolerance and yield in the global warming era. Here, we show that deacetylation of non-histone proteins mediated by cytoplasmic histone deacetylase HDA714 is required for plant tolerance to heat stress in rice. Heat stress reduces overall protein lysine acetylation, which depends on HDA714. Being induced by heat stress, HDA714 loss of function reduces, but its overexpression enhances rice tolerance to heat stress. Under heat stress, HDA714-mediated deacetylation of metabolic enzymes stimulates glycolysis. In addition, HDA714 protein is found within heat-induced stress granules (SGs), and many SG proteins are acetylated under normal temperature. HDA714 interacts with and deacetylates several SG proteins. HDA714 loss of function increases SG protein acetylation levels and impairs SG formation. Collectively, these results indicate that HDA714 responds to heat stress to deacetylate cellular proteins, control metabolic activities, stimulate SG formation, and confer heat tolerance in rice.

19.
Anim Genet ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219301

RESUMEN

Climate change is a major concern for the near future and for livestock breeding. Cattle breeding, due to its greenhouse gas emissions, is one of the most implicated industries. Consequently, the main future goals are to breed animals resilient to climate change, with the aim of lowering the livestock impact on the environment and selecting animals that will be able to resist different, unsuitable, and changing climates. The aim of this literature review is to compare the most recent studies on the response and adaptation of beef cattle breeds to extreme environments, in terms of genes and pathways involved. Beef breeding is just starting to implement genomics in its selection plans, and shedding light on the genomic responses to extreme climates could speed up and simplify the adaptation of these breeds to climate change. This review discusses the genes involved in climatic stress responses, including those related to extremely cold climates, in beef and dual-purpose cattle breeds. Genes were associated with productive traits, coat and skin structure and development, thermotolerance, cellular physiology and DNA repair mechanisms, immune system, and fertility traits. The knowledge of genes and pathways involved in climate resilience should be taken into consideration for further selection in beef cattle breeding and could promote the valorization of local breeds adapted to extreme environmental conditions. The use of local or resilient breeds could enhance the environmental and social sustainability, animal welfare, and production, compared with the introduction of cosmopolitan breeds with uncertain adaptation in uncontrolled environmental areas.

20.
Stress Biol ; 4(1): 37, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39251532

RESUMEN

Heat stress is a serious problem that affects animal husbandry by reducing growth and reproductive performance of animals. Adding plant extracts to the diet is an effective way to help overcome this problem. Alginate oligosaccharide (AOS) is a natural non-toxic antioxidant with multiple biological activities. This study analyzed the potential mechanism of AOS in alleviating heat stress and improving semen quality in boars through a combination of multiple omics tools. The results indicated that AOS could significantly increase sperm motility (P < 0.001) and sperm concentration (P < 0.05). At the same time, AOS improved the antioxidant capacity of blood and semen, and increased blood testosterone (P < 0.05) level. AOS could improve the metabolites in sperm, change the composition of gut microbiota, increase the relative abundance of beneficial bacteria such as Pseudomonas (P < 0.01), Escherichia-Shigella (P < 0.05), Bifidobacterium (P < 0.01), reduce the relative abundance of harmful bacteria such as Prevotella_9 (P < 0.05), Prevotellaceae_UCG-001 (P < 0.01), and increase the content of short chain fatty acids. Proteomic results showed that AOS increased proteins related to spermatogenesis, while decreasing heat shock protein 70 (P < 0.05) and heat shock protein 90 (P < 0.01). These results were verified using immunofluorescence staining technology. There was a good correlation among sperm quality, sperm metabolome, sperm proteome, and gut microbiota. In conclusion, AOS can be used as a feed additive to increase the semen quality of boars to enhance reproductive performance under heat stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA