Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39254810

RESUMEN

In agricultural regions prone to dust storms, heavy metal contamination of soil and crops from airborne particulates poses significant risks to food safety and public health. This study has assessed the potential of machine learning models for predicting concentrations of toxic heavy metals like arsenic, chromium, and lead in dust from the agricultural Sistan region of southeastern Iran. This region experiences frequent dust storms mobilizing particulates from local dried lakes onto agricultural lands. The metals including nickel, copper, magnesium, cobalt, zinc, chromium, arsenic, and lead were measured in summer dust samples during 2012-2018 across 15 stations. Two hybrid models were developed combining group method of data handling (GMDH) and support vector regression (SVR) machine learning with harmony search optimization (H) so as to predict toxic metals arsenic, chromium, and lead using nickel, copper, magnesium, cobalt, and zinc inputs. Standard error maps were uncertainty higher in southern and western areas, and they are most impacted by dust storms. Results demonstrated that the hybrid GMDH + H and SVR + H models improved the accuracy of individual GMDH and SVR models in predicting heavy metals. The GMDH + H model performed the best for the lead with an agreement index (d-index) of 0.98, root mean square error (RMSE) of 2.87 ppm, normalized RMSE (NRMSE) of 0.12, and coefficient of determination (RR) of 0.96. The SVR + H model showed the highest accuracy for arsenic and chromium, obtaining d-index 0.96, RMSE 0.47 ppm, NRMSE 0.09, and RR 0.92 for arsenic, and d-index 0.96, RMSE 11.24 ppm, NRMSE 0.16, and RR 0.93 for chromium. Taylor's diagram and heatmap analysis confirmed the superiority of the hybrid techniques. This work demonstrates the utility of state-of-the-art computing for addressing complex environmental health challenges.

2.
Materials (Basel) ; 15(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35454439

RESUMEN

Fiber-reinforced polymer (FRP) rebars are increasingly being used as an alternative to steel rebars in reinforced concrete (RC) members due to their excellent corrosion resistance capability and enhanced mechanical properties. Extensive research works have been performed in the last two decades to develop predictive models, codes, and guidelines to estimate the axial load-carrying capacity of FRP-RC columns. This study utilizes the power of artificial intelligence and develops an alternative approach to predict the axial capacity of FRP-RC columns more accurately using data-driven machine learning (ML) algorithms. A database of 117 tests of axially loaded FRP-RC columns is collected from the literature. The geometric and material properties, column shape and slenderness ratio, reinforcement details, and FRP types are used as the input variables, while the load-carrying capacity is used as the output response to develop the ML models. Furthermore, the input-output relationship of the ML model is explained through feature importance analysis and the SHapely Additive exPlanations (SHAP) approach. Eight ML models, namely, Kernel Ridge Regression, Lasso Regression, Support Vector Machine, Gradient Boosting Machine, Adaptive Boosting, Random Forest, Categorical Gradient Boosting, and Extreme Gradient Boosting, are used in this study for capacity prediction, and their relative performances are compared to identify the best-performing ML model. Finally, predictive equations are proposed using the harmony search optimization and the model interpretations obtained through the SHAP algorithm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA