Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Total Environ ; 917: 170331, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38278255

RESUMEN

Complex mixtures of disinfection by-products (DBPs) are present in disinfected waters, but their mixture toxicity has been rarely described. Apart from ingestion, DBP exposure can occur through inhalation, which may lead to respiratory effects in highly exposed individuals. However, the underlying biological mechanisms have yet to be elucidated. This study aimed to investigate the toxicity of a mixture of 10 DBPs, including haloacetic acids and haloaromatics, on human alveolar A549 cells by assessing their cytotoxicity, genotoxicity, and impact on the cell lipidome. A DBP mixture up to 50 µM slightly reduced cell viability, induced the generation of reactive oxygen species (ROS) up to 3.5-fold, and increased the frequency of micronuclei formation. Exposure to 50 µM DBP mixture led to a significant accumulation of triacylglycerides and a decrease of diacylglycerides and phosphatidylcholines in A549 cells. Lipidomic profiling of extracellular vesicles (EVs) released in the culture medium revealed a marked increase in cholesterol esters, sphingomyelins, and other membrane lipids. Overall, these alterations in the lipidome of cells and EVs may indicate a disruption of lipid homeostasis, and thus, potentially contribute to the respiratory effects associated with DBP exposure.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Desinfección , Agua , Desinfectantes/toxicidad , Desinfectantes/análisis , Lipidómica , Contaminantes Químicos del Agua/análisis , Halogenación
2.
Sci Total Environ ; 879: 162981, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36963690

RESUMEN

Chlorination of water results in the formation of haloacetic acids (HAAs) as major disinfection byproducts (DBPs). Previous studies have reported some HAAs species to act as cytotoxic, genotoxic, and carcinogenic. This work aimed at further exploring the toxicity potential of the most investigated HAAs (chloroacetic (CAA), bromoacetic (BAA), iodoacetic (IAA) acid) and HAAs species with high content of bromine (tribromoacetic acid (TBAA)), and iodine in their structures (chloroiodoacetic (CIAA) and diiodoacetic acid (DIAA)) to human cells. Novel knowledge was generated regarding cytotoxicity, oxidative stress, endocrine disrupting potential, and genotoxicity of these HAAs by using human placental and lung cells as in vitro models, not previously used for DBP assessment. IAA showed the highest cytotoxicity (EC50: 7.5 µM) and ability to generate ROS (up to 3-fold) in placental cells, followed by BAA (EC50: 20-25 µM and 2.1-fold). TBAA, CAA, DIAA, and CIAA showed no significant cytotoxicity (EC50 > 250 µM). All tested HAAs decreased the expression of the steroidogenic gene hsd17b1 up to 40 % in placental cells, and IAA and BAA (0.01-1 µM) slightly inhibited the aromatase activity. HAAs also induced the formation of micronuclei in A549 lung cells after 48 h of exposure. IAA and BAA showed a non-significant increase in micronuclei formation at low concentrations (1 µM), while BAA, CAA, CIAA and TBAA were genotoxic at exposure concentrations above 10 µM (100 µM in the case of DIAA). These results point to genotoxic and endocrine disruption effects associated with HAA exposure at low concentrations (0.01-1 µM), and the usefulness of the selected bioassays to provide fast and sensitive responses to HAA exposure, particularly in terms of genotoxicity and endocrine disruption effects. Further studies are needed to define thresholds that better protect public health.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Embarazo , Humanos , Femenino , Placenta , Acetatos , Desinfección/métodos , Daño del ADN , Desinfectantes/toxicidad , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua/métodos , Halogenación , Trihalometanos
3.
J Biomol Struct Dyn ; 40(5): 1979-1994, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33094694

RESUMEN

The high dependency and surplus use of agrochemical products have liberated enormous quantities of toxic halogenated pollutants into the environment and threaten the well-being of humankind. Herein, this study performed molecular docking, molecular dynamic (MD) simulations, molecular mechanics-Poisson Boltzmann Surface Area (MM-PBSA) calculations on the DehH2 from Bacillus thuringiensis, to identify the order of which the enzyme degrades different substrates, haloacids, haloacetate and chlorpyrifos. The study discovered that the DehH2 favored the degradation of haloacids and haloacetates (-3.3 - 4.6 kcal/mol) and formed three hydrogen bonds with Asp125, Arg201 and Lys202. Despite the inconclusive molecular docking result, chlorpyrifos was consistently shown to be the least favored substrate of the DehH2 in MD simulations and MM-PBSA calculations. Results of MD simulations revealed the DehH2-haloacid- (RMSD 0.15 - 0.25 nm) and DehH2-haloacetates (RMSF 0.05 - 0.25 nm) were more stable, with the DehH2-L-2CP complex being the most stable while the least was the DehH2-chlorpyrifos (RMSD 0.295 nm; RMSF 0.05 - 0.59 nm). The Molecular Mechanics Poisson-Boltzmann Surface Area calculations showed the DehH2-L-2CP complex (-24.27 kcal/mol) having the lowest binding energy followed by DehH2-MCA (-22.78 kcal/mol), DehH2-D-2CP (-21.82 kcal/mol), DehH2-3CP (-21.11 kcal/mol), DehH2-2,2-DCP (-18.34 kcal/mol), DehH2-2,3-DCP (-8.34 kcal/mol), DehH2-TCA (-7.62 kcal/mol), while chlorpyrifos was unable to spontaneously bind to DehH2 (+127.16 kcal/mol). In a nutshell, the findings of this study offer valuable insights into the rational tailoring of the DehH2 for expanding its substrate specificity and catalytic activity in the near future.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Bacillus thuringiensis , Cloropirifos , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
4.
Chemosphere ; 224: 351-359, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30826705

RESUMEN

Haloacetic acids (HAAs) are the major disinfection byproducts (DBPs) that are formed during chlorination of drinking water. In this paper, the conversion of HAAs to amino acids (e.g., glycine) via ammonolysis was studied. First, a new and sensitive method for detecting glycine was developed by setting selected ion recording m/z 76 in positive electrospray ionization mass spectrometry coupled with ultra performance liquid chromatography. Second, among the mono-HAAs under the same test conditions, iodoacetic acid (49.3%) showed a considerably higher conversion to glycine during ammonolysis than chloroacetic acid (4.2%) and bromoacetic acid (27.7%). The conversion of iodoacetic acid to glycine increased with increasing temperature, increasing reaction time, or decreasing the ratio of (NH4)2CO3 to NH3·H2O in the aminating agent. Hydrolysis of iodoacetic acid to glycolic acid was also observed during ammonolysis, and it accounted for at most 50% of the iodoacetic acid conversion. The conversion to amino acids and the hydrolysis were the two major pathways during ammonolysis of HAAs. Third, compared with the iodoacetic acid sample and the simulated tap water sample without ammonolysis, the developmental toxicity of the corresponding samples with ammonolysis decreased by up to 10.4% and 32.1%, respectively. The ammonolysis was thus demonstrated to be a detoxification process for both individual HAAs and DBP mixture in chlorinated tap water. In practice, the ammonolysis of haloacid DBPs in tap water may be realized by simply adding an appropriate amount of an aminating agent during cooking.


Asunto(s)
Acetatos/análisis , Amoníaco/química , Glicina/análisis , Ácido Yodoacético/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Agua Potable/química , Agua Potable/normas , Halogenación
5.
BMC Microbiol ; 19(1): 36, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30744555

RESUMEN

BACKGROUND: A major facilitator superfamily transporter Dehp2 was recently shown to be playing an important role in transport and biodegradation of haloacids in Paraburkholderia caribensis MBA4, and Dehp2 is phylogenetically conserved in Burkholderia sensu lato. RESULTS: We designed both Burkholderia sensu stricto-specific and Paraburkholderia-specific qPCR assays based on dehp2 and 16S rRNA, and validated the qPCR assays in 12 bacterial strains. The qPCR assays could detect single species of Burkholderia sensu stricto or Paraburkholderia with high sensitivity and discriminate them in mixtures with high specificity over a wide dynamic range of relative concentrations. At relatively lower cost compared with sequencing-based approach, the qPCR assays will facilitate discrimination of Burkholderia sensu stricto and Paraburkholderia in a large number of samples. CONCLUSIONS: For the first time, we report the utilization of a haloacids transporter gene for discriminative purpose in Burkholderia sensu lato. This enables not only quick decision on proper handling of putative pathogenic samples in Burkholderia sensu stricto group but also future exploitation of relevant species in Paraburkholderia group for haloacids biodegradation purposes.


Asunto(s)
Burkholderia/genética , Burkholderiaceae/genética , Proteínas Portadoras/genética , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
6.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-780486

RESUMEN

Aims@#The transport of haloalkanoic acids (haloacids) is important in the metabolism of haloacid pollutants by bacteria. In this study, a computational analysis of Rhizobium sp. RC1 haloacid permease (DehrP) amino acid sequence was conducted to identify its subfamily, sequence motifs and evolutionary position among closely related transporters. @*Conclusion, significance and impact of study@#Blast search in the Pfam and Transmembrane Classification Databases was used to establish the classification and the subfamily of DehrP. Clustal omega sequence alignment approach and MEME Suite motif-based analysis tools were used to locate the transporter motifs of DehrP. Dotplots of DehrP sequence was computed using the EMBOSS Dotmatcher. MEGA7 software was used to analyze the phylogenetic position of DehrP among closely related symporters in the Transmembrane Classification Database. Comparative analysis by Pfam shows that DehrP is a member of the Major Facilitator Superfamily (#2.A.1). PSI-Blast against the Transmembrane Classification Database shows that DehrP is significantly aligned with a subfamily of transporters called the Metabolite: H+ Symporters (#2.A.1.6). DehrP has six similar sequence motifs with the Metabolite: H+ Symporter proteins including the functional motif of GXXXDRXGRR. DehrP is evolutionarily related to Burkholderia caribensis MBA4 Haloacid: H+ Symporters (Dehp2 and Deh4p). @*Methodology and results@#Based on sequence similarity, DehrP is a Major Facilitator Superfamily protein that belongs to the Metabolite: H+ Symporter protein subfamily which might coordinate the transport of a haloacid coupled with a proton (H+). Mutagenesis of DehrP sequence motifs might be useful in the engineering of Rhizobium sp. RC1 for efficient uptake and degradation of haloacids.

7.
Gene ; 593(2): 322-9, 2016 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-27576348

RESUMEN

Biodegradation is an effective way to remove environmental pollutants haloacids, and haloacids uptake is an important step besides cytoplasmic dehalogenation. Previous study has identified a robust haloacids transport system in Burkholderia caribensis MBA4 with two homologous genes deh4p and dehp2 as major players. Both genes are inducible by monochloroacetate (MCA), and dehp2 is conserved among the Burkholderia genus with a two component system upstream. Here we show that dehp2 is not in the same operon with the upstream two component system, and fusion with lacZ confirmed the presence of MCA-inducible promoter activity in the 228bp upstream non-coding region of dehp2. Serial deletion confirmed 112bp upstream is enough for basic promoter activity, but sequence further upstream is useful for enhanced promoter activity. Electrophoretic mobility shift assay of the 228bp region showed a retardation complex with stronger hybridization in the induced condition, suggesting a positive regulation pattern. Regulator(s) binding region was found to lie between -228 to -113bp of dehp2. Quantitative real-time PCR showed that the expressions of dehp2 orthologs in three other Burkholderia species were also MCA-inducible, similar as dehp2. The 5' non-coding regions of these dehp2 orthologs have high sequence similarity with dehp2 promoter, and 100bp upstream of dehp2 orthologs is especially conserved. Our study identified a promoter of haloacids transporter gene that is conserved in the Burkholderia genus, which will benefit future exploitation of them for effective biodegradation of haloacids.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Proteínas Bacterianas/metabolismo , Burkholderia/efectos de los fármacos , Burkholderia/genética , Proteínas Portadoras/metabolismo , Cloroacetatos/farmacología , Secuencia Conservada
8.
Biochim Biophys Acta ; 1858(12): 3061-3070, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27668346

RESUMEN

Haloacids are considered to be environmental pollutants, but some of them have also been tested in clinical research. The way that haloacids are transported across biological membranes is important for both biodegradation and drug delivery purposes. In this review, we will first summarize putative haloacids transporters and the information about haloacids transport when studying carboxylates transporters. We will then introduce MCT1 and SLC5A8, which are respective transporter for antitumor agent 3-bromopyruvic acid and dichloroacetic acid, and monochloroacetic acid transporters Deh4p and Dehp2 from a haloacids-degrading bacterium. Phylogenetic analysis of these haloacids transporters and other monocarboxylate transporters reveals their evolutionary relationships. Haloacids transporters are not studied to the extent that they deserve compared with their great application potentials, thus future inter-discipline research are desired to better characterize their transport mechanisms for potential applications in both environmental and clinical fields.


Asunto(s)
Ácido Dicloroacético/farmacocinética , Piruvatos/farmacocinética , Animales , Transporte Biológico , Membrana Celular/metabolismo , Humanos , Transportadores de Ácidos Monocarboxílicos/fisiología , Filogenia , Simportadores/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA