Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 195(12): 1496, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37982889

RESUMEN

This investigation examines the transport of metal- and pesticide-polluted dust emitted by one of the most relevant agricultural areas of Northwestern Mexico. In the contaminated area, an excessive water extraction of the aquifer and seawater intrusion caused the abandonment of fields, which are pollutant-loaded dust emitters. We used air mass forward trajectories (HYSPLIT) model to obtain particle trajectories in the wind and the use of banned pesticides as geochemical tracers for dust transported by wind. Fifty dust samples from 10 agriculture fields and 26 roof dust of a city close to the agricultural area were analyzed for their contents of zirconium, lead, arsenic, zinc, copper, iron, manganese, vanadium, and titanium, by portable X-ray fluorescence. Nine pesticides were analyzed in the roof dust and agricultural soil samples by gas chromatography. Results show that the distribution of metals was significantly different between active and abandoned fields. Arsenic-lead-copper was mainly concentrated in abandoned fields, while zinc-iron-manganese-titanium was dominant in active fields. Two potential sources of metal contamination were found by principal component analysis (PCA): (I) a mixture of traffic and agricultural sources and (II) a group related to agricultural activities. The occurrence of banned pesticides in dust deposited on roofs collected at nearby cities confirms the atmospheric transport from the agricultural area. The HYSPLIT results indicated that the dust emitted from agricultural fields can reach up to the neighboring states of Sonora, Mexico, and the USA. The impacts that these emissions can have on human health should be studied in future research.


Asunto(s)
Arsénico , Plaguicidas , Humanos , Cobre , Manganeso , Titanio , Arizona , Monitoreo del Ambiente , Agricultura , Metales , Zinc , Hierro , Polvo
2.
Sci Total Environ ; 904: 166912, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37704138

RESUMEN

Smoke emissions from biomass burning considerably influence regional and local air quality. Many natural wildfires and agricultural burns occur annually in Central Mexico during the hot, dry season (March to May), potentially leading to air quality problems. Nevertheless, the impact of these biomass burning emissions on Mexico City's air quality has not been investigated in depth. This study examines a severely deteriorated air quality case from 11 to 16 May 2019, during which fine particle concentrations (PM2.5) exceeded the 99th percentile of the available official dataset (2005-2019). Specifically, this work aims to highlight the role of fires and regional pollution in the severe episode observed in Mexico City, identifying the fires that were the sources of regional pollution, the type of fuel burned in those fires, and the dominant atmospheric transport pattern. Biomass burning emissions were calculated for different land cover types using satellite data from the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Moderate-Resolution Imaging Spectroradiometer (MODIS). PM2.5 increased by a factor of 2 at some monitoring sites, and ozone concentration increased to 40 % in Mexico City during the poor air quality episode. Our results indicate that over 50 % of the fire activity observed during the 2019 fire season was concentrated in May in Central Mexico. The burning activity was mainly seen over shrubland and forest between 10 and 15 May. Moreover, the fire radiative power analysis indicates that most energy was associated with burning shrubland and forests. Organic carbon emissions were estimated highest on 14 and 15 May, coinciding with the largest number of fires. Back trajectory analysis indicates that enhanced concentration of air pollutants in Mexico City originated from biomass burning detected in neighboring states: Guerrero, Michoacán, and the State of Mexico. Smoke from fires on the specific vegetation cover was advected into Mexico City and contributed to the bad air quality episode. Further meteorological analysis evidenced that the fire intensity and emissions were worsened by low humidity and the late onset of the rainy season in Central Mexico.

3.
Environ Sci Pollut Res Int ; 28(8): 9806-9823, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33159225

RESUMEN

We analyzed data measured by a Sun-photometer of the RIMA-AERONET network with the purpose to characterize the aerosol properties in the atmosphere over Natal, state capital of Rio Grande do Norte, at the coast of Northeast Brazil. Aerosol Optical Depth, Ångström Exponent, Volume Size Distribution, Single Scattering Albedo, Complex Refractive Index, Asymmetry Factor, and Precipitable Water were analyzed from August 2017 to March 2018. In addition, MODIS and CALIOP observations, local Lidar measurements, and modeled backward trajectories were analyzed in a case study on February 9, 2018, that consistently confirmed the identification of a persistent aerosol layer below 4 km agl. Aerosols present in the atmosphere of Natal showed monthly mean Aerosol Optical Depth at 500 nm below 0.15 (~ 75%), monthly means of the Ångström Exponent at 440-670 nm between 0.30 and 0.70 (~ 69%), bimodal Volume Size Distribution is dominantly coarse mode, Single Scattering Albedo at 440 nm is 0.80, Refractive Index - Real Part around 1.50, Refractive Index - Imaginary Part ranging from 0.01 to 0.04, and the Asymmetry Factor ranged from 0.73 to 0.80. The aerosol typing during the measurement period showed that atmospheric aerosol over Natal is mostly composed of mixed aerosol (58.10%), marine aerosol (34.80%), mineral dust (6.30%), and biomass burning aerosols (0.80%). Backward trajectories identified that 51% of the analyzed air masses over Natal originated from the African continent.


Asunto(s)
Contaminantes Atmosféricos , Atmósfera , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Brasil , Polvo/análisis , Monitoreo del Ambiente , Fotometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA