Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Infect Genet Evol ; 85: 104518, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32891877

RESUMEN

Background Colistin resistance in P. aeruginosa (CRPA) is due to the appearance of superbug strains. As this pathogen gains more transferrable resistance mechanisms and continues to adapt to acquire additional resistance mechanisms during antimicrobial therapy rapidly, we face the growing threat of CRPA in bloodstream infections (BSI). This study designed to evaluate the frequency of CRPA strains producing different ß-lactamases by the High-Resolution Melting Curve Analysis (HRMA) method in BSI and to characterize the different types by multilocus sequence typing (MLST). MATERIAL AND METHODS: Sixty-nine (69) P. aeruginosa isolates were collected from blood culture. MIC E-test methods examined the antimicrobial susceptibilities of the bacterial isolates. Detection of resistant strains performed by using HRMA assay. RESULTS: The strains resistant to amikacin (n = 11; 15.94%) and colistin (n = 10; 14.49%) were the least abundant and the gentamicin (n = 56; 82.6%) and ciprofloxacin (n = 67; 97.10%) resistant strains were the most frequent. Also, 39 isolates (56.52%) considered as multidrug-resistant (MDR), 20 isolates (28.98%) as extensively drug resistant (XDR), and 11 isolates (15.94%) as Pandrug Resistance (PDR). Further, 32 isolates (46.37%) considered as AmpC producer, and 28 isolates (40.57%) were considered an MBL producer. According to HRMA results, the blaSPM gene was detected in 19 isolates (27.53%), blaNDM gene in 11 isolates (15.94%), blaFOX gene in 31 isolates (44.92%), mcr-1 gene in 10 isolates (14.49%), blaACC and blaVIM genes in 27 isolates (39.13%), and blaTEM gene was reported in 20 isolates (28.98%). Furthermore, P. aeruginosa PASGNDM699, ST3340, and ST235 identified in 1.44%, 11.59% and 17.39% isolates, respectively. CONCLUSION: CRPA strains play an essential role in the spread of antibiotic resistance in BSI. Likewise, the HRMA method was sensitive and specific for the detection of superbugs. Moreover, MLST analysis of a diverse collection of P. aeruginosa from blood culture suggests that particular strains or clonal complexes are associated with antibiotic resistance profile.


Asunto(s)
Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Pseudomonas/tratamiento farmacológico , Sepsis/tratamiento farmacológico , Sepsis/genética , beta-Lactamasas/genética , Colistina/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Femenino , Variación Genética , Genotipo , Humanos , Irán , Masculino , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Análisis de Secuencia
2.
Infect Drug Resist ; 13: 2943-2955, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922046

RESUMEN

BACKGROUND: The frequency and production of ß-lactamase enzymes may be different in colistin-resistant Pseudomonas aeruginosa (CRPA) strains compared to susceptible strains. The purpose of this study was to investigate the relationship between colistin resistance and ß-lactamase enzymes in different Sequence Types (ST) of P. aeruginosa. METHODS: A total of 101 P. aeruginosa isolates were collected from different samples. The antimicrobial susceptibilities of the bacterial isolates were examined by disk diffusion and MIC E-test methods. Also, real-time PCR and high-resolution melting curve analysis (HRMA) assay were performed to detect the resistance genes. RESULTS: Out of the 101 P. aeruginosa isolates, four isolates (3.96%) were resistant to colistin. Also, 39 isolates (38.61%) were considered as MDR, and eight isolates (7.92%) were considered as XDR. Further, 25 (24.75%) and 26 isolates (25.74%) were produced ESBL and carbapenemase enzymes, respectively. According to HRMA results, four isolates (3.96%) were positive for pmrA, three isolates (2.97%) were positive for mcr-1, 25 isolates (24.75%) were positive for blaTEM, 24 isolates (23.76%) were positive for blaSHV, 26 isolates (25.75%) were positive for blaKPC, and 23 isolates (22.77%) were positive for blaIMP genes. Furthermore, ST108 and ST250 showed the highest distribution in P. aeruginosa isolates. Also, ST217, ST1078, and ST3340 were reported as novel types in CRPA strains. CONCLUSION: Concerns about the prevalence of CRPA strains should be taken seriously. Also, our results showed that the mcr-1 gene plays a vital role in the distribution of ESBL and KPC-producing P. aeruginosa strains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA