Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(5): 114147, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38662541

RESUMEN

Butterfly wings display a diversity of cell types, including large polyploid scale cells, yet the molecular basis of such diversity is poorly understood. To explore scale cell diversity at a transcriptomic level, we employ single-cell RNA sequencing of ∼5,200 large cells (>6 µm) from 22.5- to 25-h male pupal forewings of the butterfly Bicyclus anynana. Using unsupervised clustering, followed by in situ hybridization, immunofluorescence, and CRISPR-Cas9 editing of candidate genes, we annotate various cell types on the wing. We identify genes marking non-innervated scale cells, pheromone-producing glandular cells, and innervated sensory cell types. We show that senseless, a zinc-finger transcription factor, and HR38, a hormone receptor, determine the identity, size, and color of different scale cell types and are important regulators of scale cell differentiation. This dataset and the identification of various wing cell-type markers provide a foundation to compare and explore scale cell-type diversification across arthropod species.


Asunto(s)
Mariposas Diurnas , Pupa , Análisis de la Célula Individual , Alas de Animales , Animales , Mariposas Diurnas/genética , Alas de Animales/metabolismo , Alas de Animales/citología , Pupa/metabolismo , Análisis de la Célula Individual/métodos , Masculino , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Transcriptoma/genética
2.
Insect Mol Biol ; 33(1): 29-40, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37738573

RESUMEN

Nuclear receptors are ligand-regulated transcription factors that play important role in regulating insect metamorphosis through the ecdysone signalling pathway. In this study, we investigated the nuclear receptor HR38 gene in Bombyx mori (BmHR38), belonging to the NR4A subfamily. BmHR38 mRNA was highly expressed in the head and epidermis at the pupal stage. The expression of the BmHR38 gene was influenced by different doses of 20E at different times. A BmHR38 deletion mutant silkworm was generated using the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system. Compared with the wild-type B. mori, the BmHR38 deletion mutant resulted in abnormal development during the pupal stage, leading to either failed eclosion or the formation of abnormal adult wings. After silencing of BmHR38 in the pupal stage, the phenotype of pupa or moth had no significant change, but it did result in reduced egg production. The mRNA levels of USP, E75 and E74 were significantly increased, while the transcript levels of FTZ-F1 were suppressed after RNA interference. Furthermore, interference with BmHR38 also inhibited the expressions of chitin metabolism genes, including Chs1, Chs2, Chi, Chi-h and CDA. Our results suggest that BmHR38 is essential for pupal development and pupa-adult metamorphosis in B. mori by regulating the expression of NRs and chitin metabolism genes.


Asunto(s)
Bombyx , Animales , Bombyx/metabolismo , Interferencia de ARN , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Pupa , Proteínas de Insectos/metabolismo , ARN Mensajero/metabolismo , Quitina/metabolismo
3.
Insect Biochem Mol Biol ; 129: 103518, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33421546

RESUMEN

Sexual differences in behavior are generated by sexually dimorphic neural circuits in animals. In insects, a highly conserved sex-determining gene doublesex (dsx) plays essential roles in the development of sexual dimorphisms. In the present study, to elucidate the neural basis of sexual differences in behaviors of silkmoth Bombyx mori, we investigated Bombyx mori dsx (Bmdsx) expression in the brains through development. In the brain, Bmdsx was differentially expressed in sex- and developmental stage-dependent manners. BmDSX protein-expressing cells were located in the dorsomedial region of the pupal and adult brains, and constituted two and one neural clusters in males and females, respectively. The number of BmDSX-positive cells was developmentally regulated and peaked at the early to middle pupal stages, suggesting that the sexually dimorphic neural circuits are established during this period. The detection of a neural activity marker protein BmHR38 suggested that the BmDSX-positive cells are not active during sexual behavior in both male and female moths, even though the cells in the vicinity of the BmDSX-positive cell clusters are active. These results imply that Bmdsx plays roles in the development of sexually dimorphic neural circuits, but the neural circuits are not related to sexual behavior in silkmoths.


Asunto(s)
Bombyx/citología , Proteínas de Insectos/metabolismo , Neuronas/metabolismo , Caracteres Sexuales , Animales , Bombyx/metabolismo , Encéfalo/metabolismo , Femenino , Larva/metabolismo , Masculino , Pupa/metabolismo
4.
Front Insect Sci ; 1: 723297, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-38468890

RESUMEN

The foraging of honey bees is one of the most well-organized and admirable behaviors that exist among social insects. In behavioral studies, these beautiful insects have been extensively used for understanding time-space learning, landmark use, and the concept of learning. Highly organized behaviors such as social interaction and communication are systematically well-organized behavioral components of honey bee foraging. Over the last two decades, understanding the regulatory mechanisms underlying honey bee foraging at the cellular and molecular levels has been increasingly interested to several researchers. Upon the search of regulatory genes of brain and behavior, immediate early (IE) genes are considered as a good tool to begin the search investigation. Our two recent studies have demonstrated three IE genes, namely, Egr-1, Hr38, and Kakusei, playing a role in the daily foraging of bees and their association with learning and memory during foraging. These studies further evidence that IE genes can be used as a tool in finding the specific molecular/cellular players of foraging in honey bees and its behavioral components such as learning, memory, social interaction, and social communication. In this article, we provide the details of the method of sample collection at different times during foraging to investigate the foraging regulatory molecules.

5.
Proc Natl Acad Sci U S A ; 116(12): 5715-5720, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30837311

RESUMEN

Males of Drosophila melanogaster exhibit stereotypic courtship behavior through which they assess potential mates by processing multimodal sensory information. Although previous studies revealed important neural circuits involved in this process, the full picture of circuits that participate in male courtship remains elusive. Here, we established a genetic tool to visualize or optogenetically reactivate neural circuits activated upon specific behavior, exploiting promoter activity of a neural activity-induced gene Hr38 With this approach, we visualized neural circuits activated in the male brain and the ventral nerve cord when a male interacted with a female. The labeling of neural circuits was additively dependent on inputs from antennae and foreleg tarsi. In addition, neural circuits that express the sex-determining gene fruitless or doublesex were extensively labeled by interaction with a female. Furthermore, optogenetic reactivation of the labeled neural circuits induced courtship posture. With this mapping system, we found that a fruitless-positive neural cluster aSP2 was labeled when a male interacted with a female, in addition to previously characterized neurons. Silencing of neurons including aSP2 led to frequent interruption of courtship and significant reduction of mating success rate without affecting latency to start courtship, suggesting that these neurons are required for courtship persistency important for successful copulation. Overall, these results demonstrate that activity-dependent labeling can be used as a powerful tool not only in vertebrates, but also in invertebrates, to identify neural circuits regulating innate behavior.


Asunto(s)
Red Nerviosa/diagnóstico por imagen , Optogenética/métodos , Conducta Sexual Animal/fisiología , Animales , Conducta Animal/fisiología , Encéfalo/fisiología , Cortejo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Femenino , Genes Inmediatos-Precoces/fisiología , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo
6.
Genes Brain Behav ; 18(3): e12486, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29726098

RESUMEN

Drug naïve animals given a single dose of ethanol show changed responses to subsequent doses, including the development of ethanol tolerance and ethanol preference. These simple forms of behavioral plasticity are due in part to changes in gene expression and neuronal properties. Surprisingly little is known about how ethanol initiates changes in gene expression or what the changes do. Here we demonstrate a role in ethanol plasticity for Hr38, the sole Drosophila homolog of the mammalian Nr4a1/2/3 class of immediate early response transcription factors. Acute ethanol exposure induces transient expression of Hr38 and other immediate early neuronal activity genes. Ethanol activates the Mef2 transcriptional activator to induce Hr38, and the Sirt1 histone/protein deacetylase is required to terminate Hr38 induction. Loss of Hr38 decreases ethanol tolerance and causes precocious but short-lasting ethanol preference. Similarly, reduced Mef2 activity in all neurons or specifically in the mushroom body α/ß neurons decreases ethanol tolerance; Sirt1 promotes ethanol tolerance in these same neurons. Genetically decreasing Hr38 expression levels in Sirt1 null mutants restores ethanol tolerance, demonstrating that both induction and termination of Hr38 expression are important for behavioral plasticity to proceed. These data demonstrate that Hr38 functions as an immediate early transcription factor that promotes ethanol behavioral plasticity.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Depresores del Sistema Nervioso Central/farmacología , Proteínas de Drosophila/genética , Etanol/farmacología , Factores Reguladores Miogénicos/genética , Neuronas/efectos de los fármacos , Sirtuina 1/genética , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Mutación con Pérdida de Función , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/efectos de los fármacos , Cuerpos Pedunculados/metabolismo , Factores Reguladores Miogénicos/metabolismo , Plasticidad Neuronal , Neuronas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Sirtuina 1/metabolismo
7.
Insect Mol Biol ; 27(1): 90-98, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28987007

RESUMEN

In honey bees, continuous foraging at an artificial feeder induced a sustained upregulation of the immediate early genes early growth response protein 1 (Egr-1) and hormone receptor 38 (Hr38). This gene expression response was accompanied by an upregulation of several Egr-1 candidate downstream genes: ecdysone receptor (EcR), dopamine/ecdysteroid receptor (DopEcR), dopamine decarboxylase and dopamine receptor 2. Hr38, EcR and DopEcR are components of the ecdysteroid signalling pathway, which is highly probably involved in learning and memory processes in honey bees and other insects. Time-trained foragers still showed an upregulation of Egr-1 when the feeder was presented at an earlier time of the day, suggesting that the genomic response is more dependent on the food reward than training time. However, presentation of the feeder at the training time without food was still capable of inducing a transient increase in Egr-1 expression. Thus, learnt feeder cues, or even training time, probably affect Egr-1 expression. In contrast, whole brain Egr-1 expression changes did not differ between dancing and nondancing foragers. On the basis of our results we propose that food reward induced continuous foraging ultimately elicits a genomic response involving Egr-1 and Hr38 and their downstream genes. Furthermore this genomic response is highly probably involved in foraging-related learning and memory responses.


Asunto(s)
Abejas/fisiología , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Ecdisteroides/metabolismo , Proteínas de Insectos/genética , Transducción de Señal , Regulación hacia Arriba , Animales , Abejas/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Conducta Alimentaria , Proteínas de Insectos/metabolismo
8.
G3 (Bethesda) ; 6(10): 3419-3430, 2016 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-27527791

RESUMEN

The regulation of gene expression controls development, and changes in this regulation often contribute to phenotypic evolution. Drosophila pigmentation is a model system for studying evolutionary changes in gene regulation, with differences in expression of pigmentation genes such as yellow that correlate with divergent pigment patterns among species shown to be caused by changes in cis- and trans-regulation. Currently, much more is known about the cis-regulatory component of divergent yellow expression than the trans-regulatory component, in part because very few trans-acting regulators of yellow expression have been identified. This study aims to improve our understanding of the trans-acting control of yellow expression by combining yeast-one-hybrid and RNAi screens for transcription factors binding to yellow cis-regulatory sequences and affecting abdominal pigmentation in adults, respectively. Of the 670 transcription factors included in the yeast-one-hybrid screen, 45 showed evidence of binding to one or more sequence fragments tested from the 5' intergenic and intronic yellow sequences from D. melanogaster, D. pseudoobscura, and D. willistoni, suggesting that they might be direct regulators of yellow expression. Of the 670 transcription factors included in the yeast-one-hybrid screen, plus another TF previously shown to be genetically upstream of yellow, 125 were also tested using RNAi, and 32 showed altered abdominal pigmentation. Nine transcription factors were identified in both screens, including four nuclear receptors related to ecdysone signaling (Hr78, Hr38, Hr46, and Eip78C). This finding suggests that yellow expression might be directly controlled by nuclear receptors influenced by ecdysone during early pupal development when adult pigmentation is forming.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Regulación de la Expresión Génica , Estudios de Asociación Genética , Pigmentación/genética , Interferencia de ARN , Técnicas del Sistema de Dos Híbridos , Animales , Drosophila/metabolismo , Ecdisona/metabolismo , Elementos de Facilitación Genéticos , Estudios de Asociación Genética/métodos , Pruebas Genéticas , Mutación , Fenotipo , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
J Insect Physiol ; 90: 8-16, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27090809

RESUMEN

A complex signaling network appears to be involved in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in insect prothoracic glands (PGs). Less is known about the genomic action of PTTH signaling. In the present study, we investigated the effect of PTTH on the expression of Bombyx mori HR38, an immediate early gene (IEG) identified in insect systems. Our results showed that treatment of B. mori PGs with PTTH in vitro resulted in a rapid increase in HR38 expression. Injection of PTTH into day-5 last instar larvae also greatly increased HR38 expression, verifying the in vitro effect. Cycloheximide did not affect induction of HR38 expression, suggesting that protein synthesis is not required for PTTH's effect. A mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor (U0126), and a phosphoinositide 3-kinase (PI3K) inhibitor (LY294002), partially inhibited PTTH-stimulated HR38 expression, implying the involvement of both the ERK and PI3K signaling pathways. When PGs were treated with agents that directly elevate the intracellular Ca(2+) concentration (either A23187 or thapsigargin), an increase in HR38 expression was also detected, indicating that Ca(2+) is involved in PTTH-stimulated HR38 gene expression. A Western blot analysis showed that PTTH treatment increased the HR38 protein level, and protein levels showed a dramatic increase during the later stages of the last larval instar. Expression of HR38 transcription in response to PTTH appeared to undergo development-specific changes. Treatment with ecdysone in vitro did not affect HR38 expression. However, 20-hydroxyecdysone treatment decreased HR38 expression. Taken together, these results demonstrate that HR38 is a PTTH-stimulated IEG that is, at least in part, induced through Ca(2+)/ERK and PI3K signaling. The present study proposes a potential cross talk mechanism between PTTH and ecdysone signaling to regulate insect development and lays a foundation for a better understanding of the mechanisms of PTTH's actions.


Asunto(s)
Bombyx/genética , Hormonas de Insectos/metabolismo , Proteínas de Insectos/genética , Receptores Nucleares Huérfanos/genética , Animales , Bombyx/crecimiento & desarrollo , Bombyx/metabolismo , Ecdisteroides/metabolismo , Glándulas Exocrinas/metabolismo , Proteínas de Insectos/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Receptores Nucleares Huérfanos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA