Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Gastro Hep Adv ; 3(5): 687-702, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165427

RESUMEN

Background and Aims: Decoding pancreatic ductal adenocarcinoma heterogeneity and the consequent therapeutic selection remains a challenge. We aimed to characterize epigenetically regulated pathways involved in pancreatic ductal adenocarcinoma progression. Methods: Global DNA methylation analysis in pancreatic cancer patient tissues and cell lines was performed to identify differentially methylated genes. Targeted bisulfite sequencing and in vitro methylation reporter assays were employed to investigate the direct link between site-specific methylation and transcriptional regulation. A series of in vitro loss-of-function and gain-of function studies and in vivo xenograft and the KPC (LSL-Kras G12D/+ ; LSL-Trp53 R172H/+ ; Pdx1-Cre) mouse models were used to assess pancreatic cancer cell properties. Gene and protein expression analyses were performed in 3 different cohorts of pancreatic cancer patients and correlated to clinicopathological parameters. Results: We identify Hepatocyte Nuclear Factor 4A (HNF4A) as a novel target of hypermethylation in pancreatic cancer and demonstrate that site-specific proximal promoter methylation drives HNF4A transcriptional repression. Expression analyses in patients indicate the methylation-associated suppression of HNF4A expression in pancreatic cancer tissues. In vitro and in vivo studies reveal that HNF4A is a novel tumor suppressor in pancreatic cancer, regulating cancer growth and aggressiveness. As evidenced in both the KPC mouse model and human pancreatic cancer tissues, HNF4A expression declines significantly in the early stages of the disease. Most importantly, HNF4 loss correlates with poor overall patient survival. Conclusion: HNF4A silencing, mediated by promoter DNA methylation, drives pancreatic cancer development and aggressiveness leading to poor patient survival.

2.
Sci Rep ; 14(1): 19860, 2024 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191897

RESUMEN

Maturity-onset diabetes of the young (MODY) is an uncommon monogenic type of diabetes mellitus. Detecting genetic variants for MODY is a necessity for precise diagnosis and treatment. The majority of MODY genetic predisposition has been documented in European populations and a lack of information is present in Iranians which leads to misdiagnosis as a consequence of defects in unknown variants. In this study, using genetic variant information of 20,002 participants from the family-based TCGS (Tehran Cardiometabolic Genetic Study) cohort, we evaluated the genetic spectrum of MODY in Iran. We concentrated on previously discovered MODY-causing genes. Genetic variants were evaluated for their pathogenicity. We discovered 6 variants that were previously reported in the ClinVar as pathogenic/likely pathogenic (P/LP) for MODY in 45 participants from 24 families (INS in 21 cases, GCK in 13, HNF1B in 8, HNF4A, HNF1A, and CEL in 1 case). One potential MODY variant with Uncertain Risk Allele in ClinVar classification was also identified, which showed complete disease penetrance (100%) in four subjects from one family. This is the first family-based study to define the genetic spectrum and estimate the prevalence of MODY in Iran. The discovered variants need to be investigated by additional studies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Predisposición Genética a la Enfermedad , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiología , Irán/epidemiología , Masculino , Femenino , Adulto , Adolescente , Factor Nuclear 1-alfa del Hepatocito/genética , Adulto Joven , Persona de Mediana Edad , Factor Nuclear 1-beta del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/genética , Niño , Linaje , Mutación
3.
Front Genet ; 15: 1362977, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933924

RESUMEN

Women with maturity-onset diabetes of the young (MODY) need tailored antenatal care and monitoring of their offspring. Each MODY subtype has different implications for glycaemic targets, treatment choices and neonatal management. Hyperglycaemia of MODY is often first diagnosed in adolescence or early adulthood and therefore is clinically relevant to pregnant women. MODY remains an under-recognised and undiagnosed condition. Pregnancy represents an opportune time to make a genetic diagnosis of MODY and provide precision treatment. This review describes the nuance of antenatal care in women with MODY and the implications for pregnancies affected by a positive paternal genotype. Mutations in hepatic nuclear factor 1-alpha (HNF1A) and 4-alpha (HNF4A) genes are associated with progressive ß-cell dysfunction resulting in early onset diabetes. Patients are largely managed with sulphonylureas outside of pregnancy. Macrosomia and persistent neonatal hypoglycaemia are reported in 54% and 15% of HNF4A genotype positive offspring respectively with a median increase in birthweight of 790 g. Close observation of foetal growth in utero allows optimal timing of delivery to minimise peri- and postpartum materno-foetal complications. Glucokinase (GCK)-MODY causes mild fasting hyperglycaemia which does not require treatment outside of pregnancy. Birthweight of offspring of maternal carriers is dependent on foetal genotype; heterozygous mutation carriers are usually normal weight while genotype negative offspring are large for gestational age (600 g heavier). Affected offspring of paternal carriers may be small for gestational age (500 g lighter). Serial growth scans with measurement of the abdominal circumference indirectly differentiate foetal genotype. Measurement of cell free foetal DNA in maternal blood from the late first trimester is superior to traditionally used ultrasound to distinguish foetal genotype. Cost and accessibility may limit its use.

4.
Biochem Pharmacol ; 224: 116247, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38697311

RESUMEN

Current therapeutic options for renal cell carcinoma (RCC) are very limited, which is largely due to inadequate comprehension of molecular pathological mechanisms as well as RCC's resistance to chemotherapy. Dual-specificity phosphatase 6 (DUSP6) has been associated with numerous human diseases. However, its role in RCC is not well understood. Here, we show that diminished DUSP6 expression is linked to RCC progression and unfavorable prognosis. Mechanistically, DUSP6 serves as a tumor suppressor in RCC by intervening the TAF10 and BSCL2 via the ERK-AKT pathway. Further, DUSP6 is also transcriptionally regulated by HNF-4a. Moreover, docking experiments have indicated that DUSP6 expression is enhanced when bound by Calcium saccharate, which also inhibits RCC cell proliferation, metabolic rewiring, and sunitinib resistance. In conclusion, our study identifies Calcium saccharate as a prospective pharmacological therapeutic approach for RCC.


Asunto(s)
Antineoplásicos , Carcinoma de Células Renales , Fosfatasa 6 de Especificidad Dual , Glucólisis , Neoplasias Renales , Proteínas Proto-Oncogénicas c-akt , Sunitinib , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Sunitinib/farmacología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Glucólisis/efectos de los fármacos , Glucólisis/fisiología , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Fosfatasa 6 de Especificidad Dual/metabolismo , Fosfatasa 6 de Especificidad Dual/genética , Antineoplásicos/farmacología , Ratones , Ratones Desnudos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino
5.
Cancer Cell ; 42(6): 1106-1125.e8, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38788718

RESUMEN

Neuroendocrine carcinomas (NECs) are extremely lethal malignancies that can arise at almost any anatomic site. Characterization of NECs is hindered by their rarity and significant inter- and intra-tissue heterogeneity. Herein, through an integrative analysis of over 1,000 NECs originating from 31 various tissues, we reveal their tissue-independent convergence and further unveil molecular divergence driven by distinct transcriptional regulators. Pan-tissue NECs are therefore categorized into five intrinsic subtypes defined by ASCL1, NEUROD1, HNF4A, POU2F3, and YAP1. A comprehensive portrait of these subtypes is depicted, highlighting subtype-specific transcriptional programs, genomic alterations, evolution trajectories, therapeutic vulnerabilities, and clinicopathological presentations. Notably, the newly discovered HNF4A-dominated subtype-H exhibits a gastrointestinal-like signature, wild-type RB1, unique neuroendocrine differentiation, poor chemotherapeutic response, and prevalent large-cell morphology. The proposal of uniform classification paradigm illuminates transcriptional basis of NEC heterogeneity and bridges the gap across different lineages and cytomorphological variants, in which context-dependent prevalence of subtypes underlies their phenotypic disparities.


Asunto(s)
Carcinoma Neuroendocrino , Regulación Neoplásica de la Expresión Génica , Humanos , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/patología , Carcinoma Neuroendocrino/clasificación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Señalizadoras YAP , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
6.
J Endocr Soc ; 8(6): bvae090, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38745825

RESUMEN

Context: HNF4A-maturity-onset diabetes of the young (MODY1) is a relatively rare subtype of monogenic diabetes caused by loss of function of the HNF4A gene, which encodes the transcription factor HNF4α. HNF4α is known to form heterodimers, and the various combinations of isoforms that make up these heterodimers have been reported to result in a diversity of targeted genes. However, the function of individual HNF4α variant isoforms and the heterodimers comprising both wild-type (WT) and variant HNF4α have not yet been assessed. Objective: In this study, we analyzed the functional consequence of the HNF4A D248Y variant in vitro. Methods: We investigated the case of a 12-year-old Japanese girl who developed diabetes at age 11 years. Genetic sequencing detected a novel heterozygous missense HNF4A variant (c.742G > T, p.Asp248Tyr; referred as "D248Y") in the patient and her relatives who presented with diabetes. Results: Although the WT HNF4α isoforms (HNF4α2, HNF4α3, HNF4α8, HNF4α9) enhanced the INS gene promoter activity in HepG2 cells, the promoter activity of D248Y was consistently low across all isoforms. The presence of D248Y in homodimers and heterodimers, comprising either HNF4α8 or HNF4α3 or a combination of both isoforms, also reduced the INS promoter activity in Panc-1 cells. Conclusion: We report the clinical course of a patient with HNF4A-MODY and the functional analysis of novel HNF4A variants, with a focus on the isoforms and heterodimers they form. Our results serve to improve the understanding of the dominant-negative effects of pathogenic HNF4A variants.

7.
Evol Bioinform Online ; 20: 11769343241249017, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680615

RESUMEN

Background: Intestinal metaplasia (IM) of gastric epithelium has traditionally been regarded as an irreversible stage in the process of the Correa cascade. Exploring the potential molecular mechanism of IM is significant for effective gastric cancer prevention. Methods: The GSE78523 dataset, obtained from the Gene Expression Omnibus (GEO) database, was analyzed using RStudio software to identify the differently expressed genes (DEGs) between IM tissues and normal gastric epithelial tissues. Subsequently, gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, Gene Set Enrichment Analysis (GESA), and protein-protein interaction (PPI) analysis were used to find potential genes. Additionally, the screened genes were analyzed for clinical, immunological, and genetic correlation aspects using single gene clinical correlation analysis (UALCAN), Tumor-Immune System Interactions Database (TISIDB), and validated through western blot experiments. Results: Enrichment analysis showed that the lipid metabolic pathway was significantly associated with IM tissues and the apolipoprotein B (APOB) gene was identified in the subsequent analysis. Experiment results and correlation analysis showed that the expression of APOB was higher in IM tissues than in normal tissues. This elevated expression of APOB was also found to be associated with the expression levels of hepatocyte nuclear factor 4A (HNF4A) gene. HNF4A was also found to be associated with immune cell infiltration to gastric cancer and was linked to the prognosis of gastric cancer patients. Moreover, HNF4A was also highly expressed in both IM tissues and gastric cancer cells. Conclusion: Our findings indicate that HNF4A regulates the microenvironment of lipid metabolism in IM tissues by targeting APOB. Higher expression of HNF4A tends to lead to a worse prognosis in gastric cancer patients implying it may serve as a predictive indicator for the progression from IM to gastric cancer.

8.
JCEM Case Rep ; 2(3): luae031, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38495396

RESUMEN

Maturity-onset diabetes of the young (MODY) encompasses a group of rare monogenic forms of diabetes, with 14 subtypes described in the literature, each with a distinct underlying genetic mutation. We present a case with mutations in 2 different genes that are known to be responsible for MODY. A 33-year-old male individual presented to the endocrinology clinic for evaluation. He was diagnosed with type 2 diabetes mellitus at 13 years of age and was initially treated with insulin, which was subsequently switched to repaglinide and metformin. The patient reported a history of hypoglycemia at birth and in his daughter. His biological father was diagnosed with diabetes mellitus at 16 years of age. Genetic testing for monogenic diabetes revealed a pathogenic variant in hepatocyte nuclear factor 4 alpha and a variant of unknown significance in Paired Box Gene 4. The treatment was switched to glipizide 2.5 mg orally, which resulted in adequate glycemic control. Genetic testing was recommended for his daughter. MODY can be missed because of its broad clinical presentation. Heightened vigilance and a low threshold for genetic testing for MODY are required in patients with a high likelihood of having MODY, as the treatment can be tailored to individual patient needs.

9.
Hum Mol Genet ; 33(10): 894-904, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38433330

RESUMEN

Hepatocyte nuclear factor-4 alpha (HNF-4A) regulates genes with roles in glucose metabolism and ß-cell development. Although pathogenic HNF4A variants are commonly associated with maturity-onset diabetes of the young (MODY1; HNF4A-MODY), rare phenotypes also include hyperinsulinemic hypoglycemia, renal Fanconi syndrome and liver disease. While the association of rare functionally damaging HNF1A variants with HNF1A-MODY and type 2 diabetes is well established owing to robust functional assays, the impact of HNF4A variants on HNF-4A transactivation in tissues including the liver and kidney is less known, due to lack of similar assays. Our aim was to investigate the functional effects of seven HNF4A variants, located in the HNF-4A DNA binding domain and associated with different clinical phenotypes, by various functional assays and cell lines (transactivation, DNA binding, protein expression, nuclear localization) and in silico protein structure analyses. Variants R85W, S87N and R89W demonstrated reduced DNA binding to the consensus HNF-4A binding elements in the HNF1A promoter (35, 13 and 9%, respectively) and the G6PC promoter (R85W ~10%). While reduced transactivation on the G6PC promoter in HepG2 cells was shown for S87N (33%), R89W (65%) and R136W (35%), increased transactivation by R85W and R85Q was confirmed using several combinations of target promoters and cell lines. R89W showed reduced nuclear levels. In silico analyses supported variant induced structural impact. Our study indicates that cell line specific functional investigations are important to better understand HNF4A-MODY genotype-phenotype correlations, as our data supports ACMG/AMP interpretations of loss-of-function variants and propose assay-specific HNF4A control variants for future functional investigations.


Asunto(s)
Diabetes Mellitus Tipo 2 , Factor Nuclear 4 del Hepatocito , Regiones Promotoras Genéticas , Activación Transcripcional , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Humanos , Activación Transcripcional/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Hep G2 , Variación Genética , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Línea Celular
10.
Chem Biol Interact ; 390: 110867, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38199259

RESUMEN

Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are indeed among the most well known and extensively studied Per- and polyfluoroalkyl substances (PFASs), and increasing evidence confirm their effects on human health, especially liver steatosis. Nonetheless, the molecular mechanisms of their initiation of hepatic steatosis is still elusive. Therefore, potential targets of PFOA/PFOS must be explored to ameliorate its adverse consequences. This research aims to investigate the molecular mechanisms of PFOA and PFOS-induced liver steatosis, with emphasis on identifying a potential target that links these PFASs to liver steatosis. The potential target that causes PFOA and PFOS-induced liver steatosis have been explored and determined based on molecular docking, molecular dynamics (MD) simulation, and transcriptomics analysis. In silico results show that PFOA/PFOS can form a stable binding conformation with HNF4A, and PFOA/PFOS may interact with HNF4A to affect the downstream conduction mechanism. Transcriptome data from PFOA/PFOS-induced human stem cell spheres showed that HNF4A was inhibited, suggesting that PFOA/PFOS may constrain its function. PFOS mainly down-regulated genes related to cholesterol synthesis while PFOA mainly up-regulated genes related to fatty acid ß-oxidation. This study explored the toxicological mechanism of liver steatosis caused by PFOA/PFOS. These compounds might inhibit and down-regulate HNF4A, which is the molecular initiation events (MIE) that induces liver steatosis.


Asunto(s)
Ácidos Alcanesulfónicos , Hígado Graso , Fluorocarburos , Humanos , Simulación del Acoplamiento Molecular , Caprilatos/toxicidad , Hígado Graso/inducido químicamente , Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/toxicidad , Perfilación de la Expresión Génica , Factor Nuclear 4 del Hepatocito/genética
12.
Cell Mol Gastroenterol Hepatol ; 17(3): 453-479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37993018

RESUMEN

BACKGROUND & AIMS: HNF4α, a master regulator of liver development and the mature hepatocyte phenotype, is down-regulated in chronic and inflammatory liver disease. We used contemporary transcriptomics and epigenomics to study the cause and effects of this down-regulation and characterized a multicellular etiology. METHODS: Progressive changes in the rat carbon tetrachloride model were studied by deep RNA sequencing and genome-wide chromatin immunoprecipitation sequencing analysis of transcription factor (TF) binding and chromatin modification. Studies compared decompensated cirrhosis with liver failure after 26 weeks of treatment with earlier compensated cirrhosis and with additional rat models of chronic fibrosis. Finally, to resolve cell-specific responses and intercellular signaling, we compared transcriptomes of liver, nonparenchymal, and inflammatory cells. RESULTS: HNF4α was significantly lower in 26-week cirrhosis, part of a general reduction of TFs that regulate metabolism. Nevertheless, increased binding of HNF4α contributed to strong activation of major phenotypic genes, whereas reduced binding to other genes had a moderate phenotypic effect. Decreased Hnf4a expression was the combined effect of STAT3 and nuclear factor kappa B (NFκB) activation, which similarly reduced expression of other metabolic TFs. STAT/NFκB also induced de novo expression of Osmr by hepatocytes to complement induced expression of Osm by nonparenchymal cells. CONCLUSIONS: Liver decompensation by inflammatory STAT3 and NFκB signaling was not a direct consequence of progressive cirrhosis. Despite significant reduction of Hnf4a expression, residual levels of this abundant TF still stimulated strong new gene expression. Reduction of HNF4α was part of a broad hepatocyte transcriptional response to inflammation.


Asunto(s)
Factor Nuclear 4 del Hepatocito , Fallo Hepático , Animales , Ratas , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , Cirrosis Hepática/patología , Fallo Hepático/metabolismo
13.
J Gastroenterol Hepatol ; 39(2): 305-311, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38058101

RESUMEN

BACKGROUND AND AIM: A large genetic effect of a novel gallstone-associated genetic variant, the hepatocyte nuclear factor 4α (HNF4A) rs1800961 polymorphism, has been identified through recent genome-wide association studies. However, this effect has not been validated in Asian populations. We investigated the association between the rs1800961 variant and gallstones among a Taiwanese population. METHODS: A total of 20 405 participants aged between 30 and 70 years voluntarily enrolled in the Taiwan Biobank. Self-report questionnaires, physical examinations, biochemical tests, and genotyping were used for analysis. The association of the HNF4A rs1800961 variant and other metabolic risks with gallstone disease was analyzed using multiple logistic regression models. RESULTS: The minor T allele of HNF4A rs1800961 was associated with an increased risk of gallstone, and the association remained significant even after adjustment for other risk factors including age, body mass index (BMI), diabetes, hyperlipidemia, hypertension, and cigarette smoking (adjusted odds ratio [OR] = 1.90, 95% confidence interval [CI] = 1.31 to 2.75) in male participants. When further stratified by BMI and age, the lithogenic effect was the most significant in male participants with obesity (adjusted OR = 3.55, 95% CI = 1.92 to 6.56) and who were younger (adjusted OR = 2.45, 95% CI = 1.49 to 4.04). CONCLUSION: The novel gallstone-associated HNF4A rs1800961 variant was associated with the risk of gallstone in the Taiwanese men. Screening for the rs1800961 polymorphism may be particularly useful in assessing the risk of gallstone formation in younger or obese men.


Asunto(s)
Cálculos Biliares , Humanos , Masculino , Adulto , Persona de Mediana Edad , Anciano , Cálculos Biliares/etiología , Estudio de Asociación del Genoma Completo , Factores de Riesgo , Obesidad/epidemiología , Obesidad/genética , Obesidad/complicaciones , Factores Nucleares del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/genética
14.
Ophthalmic Genet ; : 1-6, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37997707

RESUMEN

BACKGROUND: Fanconi's syndrome (FS) is characterized by type-2 renal tubular acidosis, short stature, and renal rickets, along with glycosuria, aminoaciduria, hypophosphaturia, and urinary bicarbonate wasting. The genetic form of FS has been linked to HNF4A variants. Although additional clinical features such as hearing impairment have recently been associated with HNF4A-linked FS, its ocular manifestation has not been described. MATERIAL AND METHODS: Presenting a case of a 5-year-old male child with bilateral progressive corneal opacification and the presence of bilateral greyish-white deposits in the interpalpebral region since infancy. A next-generation sequencing (NGS)-based genetic testing was performed for the child followed by parental genetic testing for the identified variant. Furthermore, relevant works of literature were reviewed related to this condition. RESULTS: Detailed corneal findings showed a bilateral band-shaped keratopathy (BSK) in the patient. Physical and systemic findings showed signs consistent with FS. Sequencing analysis revealed a novel heterozygous c.635C>T, (p.Pro212Leu) variant in the HNF4A gene in the proband and mother, while the father had a normal genotype. CONCLUSIONS: Our case highlights the occurrence of BSK in an exceptionally rare manifestation of hereditary FS linked to HNF4A gene variant. The variant exists both in proband and asymptomatic mother. Therefore, the variable penetrance which is known to exist in HNF4A is acknowledged in this context. This report suggests the first documented instance establishing a plausible connection between BSK and HNF4A-associated FS, characterized by the variable penetrance attributed to the HNF4A gene.

15.
Aging (Albany NY) ; 15(20): 11052-11066, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37851364

RESUMEN

Chondroitin polymerizing factor (CHPF) is an important glycosyltransferases that participates in the biosynthesis of chondroitin sulfate (CS). Our previous study showed that silencing CHPF expression inhibited glioma cell proliferation in vitro, but the molecular mechanisms by which CHPF contributes to development of glioma have not been characterized. In this study, we found that CHPF was up-regulated in glioma tissues and was positively correlated with malignant clinical pathological characteristics of patients with glioma. Silencing CHPF expression inhibited proliferation, colony formation, migration, and cell cycle of glioma cells. Moreover, silencing CHPF suppressed glioma malignance in vivo. Immunoprecipitation, co-immunoprecipitation, GST pulldown, and liquid chromatography-mass spectrometry (LC-MS/MS) assays were used to verify the interaction between CHPF and Mitotic arrest deficient 1-like 1 (MAD1L1). In addition, Chromatin Immunoprecipitation (ChIP)-PCR analysis showed that HNF4A bound to the CHPF promoter region, which indicated that the transcription factor hepatocyte nuclear factor 4A (HNF4A) could regulate the expression of CHPF in glioma cells.


Asunto(s)
Condroitín , Glioma , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Glioma/patología , Factores Nucleares del Hepatocito/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Ciclo Celular/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo
16.
Cell Metab ; 35(11): 1897-1914.e11, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37858332

RESUMEN

Genetic studies have identified numerous loci associated with type 2 diabetes (T2D), but the functional roles of many loci remain unexplored. Here, we engineered isogenic knockout human embryonic stem cell lines for 20 genes associated with T2D risk. We examined the impacts of each knockout on ß cell differentiation, functions, and survival. We generated gene expression and chromatin accessibility profiles on ß cells derived from each knockout line. Analyses of T2D-association signals overlapping HNF4A-dependent ATAC peaks identified a likely causal variant at the FAIM2 T2D-association signal. Additionally, the integrative association analyses identified four genes (CP, RNASE1, PCSK1N, and GSTA2) associated with insulin production, and two genes (TAGLN3 and DHRS2) associated with ß cell sensitivity to lipotoxicity. Finally, we leveraged deep ATAC-seq read coverage to assess allele-specific imbalance at variants heterozygous in the parental line and identified a single likely functional variant at each of 23 T2D-association signals.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Madre Embrionarias Humanas , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Células Secretoras de Insulina/metabolismo , Polimorfismo de Nucleótido Simple , Carbonil Reductasa (NADPH)/genética , Carbonil Reductasa (NADPH)/metabolismo
17.
Mol Syndromol ; 14(4): 347-361, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37766831

RESUMEN

Introduction: The p.(Arg85Trp) variant-specific phenotype of hepatocyte nuclear factor 4 alpha shows a complex clinical picture affecting three different organ systems and their corresponding metabolisms. Little is known about the molecular mechanisms involved and their relationship with the diverse symptoms seen in the context of this specific variant. Here, we present data of a new patient that expand the clinical phenotype, suggesting possible disease mechanisms. Case Presentation: Clinical data were extracted from the patient's charts. The liver, kidney, and muscle were analyzed with routine histology and electron microscopy. Mitochondrial function was assessed by respirometric analyses and enzymatic activity assays. Structure and sequence analyses of this specific variant were investigated by in silico analyses. Our patient showed the known features of the variant-specific phenotype, including macrosomia, congenital hyperinsulinism, transient hepatomegaly, and renal Fanconi syndrome. In addition to that, she showed liver cirrhosis, chronic kidney failure, and altered mitochondrial morphology and function. The clinical and biochemical phenotype had features of a new type of glycogen storage disease. Discussion: This case expands the p.(Arg85Trp) variant-specific phenotype. Possible pathomechanistic explanations for the documented multiorgan involvement and changes of symptoms and signs during development of this ultra-rare but instructive disorder are discussed.

18.
Front Endocrinol (Lausanne) ; 14: 1237553, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711893

RESUMEN

Background: Heterozygous pathogenic variants in HNF4A gene cause maturity-onset diabetes of the young type 1 (MODY1). The mutation carriers for MODY1 have been reported to be relatively rare, in contrast to the most frequently reported forms of MODY2 and MODY3. Methods: Whole exome sequencing (WES) and Sanger sequencing were performed for genetic analysis of MODY pedigrees. Tertiary structures of the mutated proteins were predicted using PyMOL software. Results: Three heterozygous missense mutations in the HNF4A gene, I159T, W179C, and D260N, were identified in the probands of three unrelated MODY families using WES, one of which (W179C) was novel. Cascade genetic screening revealed that the mutations co-segregated with hyperglycemic phenotypes in their families. The molecular diagnosis of MODY1 has partly transformed its management in clinical practice and improved glycemic control. The proband in family A successfully converted to sulfonylureas and achieved good glycemic control. Proband B responded well to metformin combined with diet therapy because of his higher body mass index (BMI). The proband in family C, with paternal-derived mutations, had markedly defective pancreatic ß-cell function due to the superposition effect of T2DM susceptibility genes from the maternal grandfather, and he is currently treated with insulin. In silico analysis using PyMOL showed that the I159T and D260N mutations altered polar interactions with the surrounding residues, and W179C resulted in a smaller side chain. Discussion: We identified three heterozygous missense mutations of HNF4A from Chinese MODY families. Structural alterations in these mutations may lead to defects in protein function, further contributing to the hyperglycemic phenotype of mutation carriers.


Asunto(s)
Diabetes Mellitus Tipo 2 , Masculino , Humanos , Diabetes Mellitus Tipo 2/genética , Mutación , Mutación Missense , Factor Nuclear 4 del Hepatocito/genética
20.
mBio ; 14(4): e0150423, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37526424

RESUMEN

The inflammatory bowel diseases (IBD) occur in genetically susceptible individuals who mount inappropriate immune responses to their microbiota leading to chronic intestinal inflammation. Whereas IBD clinical presentation is well described, how interactions between microbiota and host genotype impact early subclinical stages of the disease remains unclear. The transcription factor hepatocyte nuclear factor 4 alpha (HNF4A) has been associated with human IBD, and deletion of Hnf4a in intestinal epithelial cells (IECs) in mice (Hnf4aΔIEC) leads to spontaneous colonic inflammation by 6-12 mo of age. Here, we tested if pathology in Hnf4aΔIEC mice begins earlier in life and if microbiota contribute to that process. Longitudinal analysis revealed that Hnf4aΔIEC mice reared in specific pathogen-free (SPF) conditions develop episodic elevated fecal lipocalin 2 (Lcn2) and loose stools beginning by 4-5 wk of age. Lifetime cumulative Lcn2 levels correlated with histopathological features of colitis at 12 mo. Antibiotic and gnotobiotic tests showed that these phenotypes in Hnf4aΔIEC mice were dependent on microbiota. Fecal 16S rRNA gene sequencing in SPF Hnf4aΔIEC and control mice disclosed that genotype significantly contributed to differences in microbiota composition by 12 mo, and longitudinal analysis of the Hnf4aΔIEC mice with the highest lifetime cumulative Lcn2 revealed that microbial community differences emerged early in life when elevated fecal Lcn2 was first detected. These microbiota differences included enrichment of a novel phylogroup of Akkermansia muciniphila in Hnf4aΔIEC mice. We conclude that HNF4A functions in IEC to shape composition of the gut microbiota and protect against episodic inflammation induced by microbiota throughout the lifespan. IMPORTANCE The inflammatory bowel diseases (IBD), characterized by chronic inflammation of the intestine, affect millions of people around the world. Although significant advances have been made in the clinical management of IBD, the early subclinical stages of IBD are not well defined and are difficult to study in humans. This work explores the subclinical stages of disease in mice lacking the IBD-associated transcription factor HNF4A in the intestinal epithelium. Whereas these mice do not develop overt disease until late in adulthood, we find that they display episodic intestinal inflammation, loose stools, and microbiota changes beginning in very early life stages. Using germ-free and antibiotic-treatment experiments, we reveal that intestinal inflammation in these mice was dependent on the presence of microbiota. These results suggest that interactions between host genotype and microbiota can drive early subclinical pathologies that precede the overt onset of IBD and describe a mouse model to explore those important processes.


Asunto(s)
Colitis , Factor Nuclear 4 del Hepatocito , Enfermedades Inflamatorias del Intestino , Microbiota , Animales , Humanos , Ratones , Antibacterianos , Colitis/inducido químicamente , Factor Nuclear 4 del Hepatocito/genética , Inflamación/patología , Enfermedades Inflamatorias del Intestino/genética , Intestinos , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA