Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 479: 135703, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39226685

RESUMEN

Cadmium (Cd) represents a hazardous heavy metal, prevalent in agricultural soil due to industrial and agricultural expansion. Its propensity for being absorbed by edible plants, even at minimal concentrations, and subsequently transferred along the food chain poses significant risks to human health. Accordingly, it is imperative to investigate novel genes and mechanisms that govern Cd tolerance and detoxification in plants. Here, we discovered that the transcription factor MYC2 directly binds to the promoters of HMA2 and HMA4 to repress their expression, thereby altering the distribution of Cd in plant tissues and negatively regulating Cd stress tolerance. Additionally, molecular, biochemical, and genetic analyses revealed that MYC2 interacts and cooperates with MYB43 to negatively regulate the expression of HMA2 and HMA4 and Cd stress tolerance. Notably, under Cd stress conditions, MYC2 undergoes degradation, thereby alleviating its inhibitory effect on HMA2 and HMA4 expression and plant tolerance to Cd stress. Thus, our study highlights the dynamic regulatory role of MYC2, in concert with MYB43, in regulating the expression of HMA2 and HMA4 under both normal and Cd stress conditions. These findings present MYC2 as a promising target for directed breeding efforts aimed at mitigating Cd accumulation in edible plant roots.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cadmio , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción , Cadmio/toxicidad , Cadmio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estrés Fisiológico , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Regiones Promotoras Genéticas , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/genética
2.
J Agric Food Chem ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842427

RESUMEN

Heavy metal contamination in soils poses a significant environmental threat to human health. This study examines the effects of the chiral herbicide napropamide (NAP) on Arabidopsis thaliana, focusing on growth metrics and cadmium (Cd) accumulation. R-NAP does not adversely affect plant growth compared to the control, whereas S-NAP significantly reduces root length and fresh weight. Notably, R-NAP markedly increases Cd accumulation in the shoots, exceeding levels observed in the control and S-NAP. This increase coincides with reduced photosynthetic efficiency. Noninvasive electrode techniques reveal a higher net Cd absorption flux in the root mature zone under R-NAP than S-NAP, although similar to the control. Transcriptomic analysis highlights significant stereoisomer differences in Cd transporters, predominantly under R-NAP treatment. SEM and molecular docking simulations support that R-NAP primarily upregulates transporters such as HMA4. The results suggest careful management of herbicides like R-NAP in contaminated fields to avoid excessive heavy metal buildup in crops.

3.
Int J Phytoremediation ; 26(10): 1643-1654, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38644603

RESUMEN

One of the most important oil crops in the world, sunflower (Helianthus annuus L.), is recognized to help in soil phytoremediation. Heavy metal (HM) contamination is one of the most abiotic challenges that may affect the growth and productivity of such an important crop plant. We studied the influence of HM-contaminated soils on metal homeostasis and the potential hypertolerance mechanisms in two sunflower Egyptian cultivars (V120 and S53). Both cultivars accumulated significantly higher cadmium concentrations in their roots compared to their shoots during Cd and Zn/Cd treatments. Higher root concentrations of 121 mg g-1 dry weight (DW) and 125 mg g-1 DW were measured in V120 plants compared to relatively lower values of 111 mg g-1 DW and 105 mg g-1 DW in the roots of S53 plants, respectively. Cadmium contamination significantly upregulated the expression of heavy metal ATPases (HaHMA4) in the shoots of V120 plants. On the other hand, their roots displayed a notable expression of HaHMA3. This study indicates that V120 plants accumulated and sequestered Cd in their roots. Therefore, it is advised to cultivate the V120 cultivar in areas contaminated with heavy metals as it is a promising Cd phytoremediator.


The current study confirms and provides new insights into the low Cd and Zn concentration responses of two cultivars of Helianthus annuus as potential HM phytoremediators. HMA3 and HMA4 mediated both root sequestration and reduced root-to-shoot translocation rates. Moreover, high CAT and POX activities may reduce oxidative damage and enhance plant tolerance. The V120 showed higher levels of Cd accumulation in its roots and could be a promising cultivar for the phytoremediation of this heavy metal. This work recalls that Cd tolerance is a trait that may vary among cultivars of the same species and should be taken into consideration in the phytomanagement of heavy metals in contaminated soils.


Asunto(s)
Biodegradación Ambiental , Cadmio , Helianthus , Contaminantes del Suelo , Zinc , Helianthus/metabolismo , Cadmio/metabolismo , Contaminantes del Suelo/metabolismo , Zinc/metabolismo , Egipto , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo
4.
BMC Microbiol ; 22(1): 174, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799112

RESUMEN

BACKGROUND: Phytoremediation is a green technology that removes heavy metal (HM) contamination from the environment by using HM plant accumulators. Among soil microbiota, plant growth promoting bacteria (PGPR) have a role influencing the metal availability and uptake. METHODS: This current study evaluates the plant growth promoting qualities of microbial flora isolated from rhizosphere, plant roots, and marine aquatic HMs polluted environments in Alexandria through several biochemical and molecular traits. Metal contents in both collected soils and plant tissues were measured. Transcript levels of marker genes (HMA3 and HMA4) were analyzed. RESULTS: Three terrestrial and one aquatic site were included in this study based on the ICP-MS identification of four HMs (Zn, Cd, Cu, and Ni) or earlier reports of HMs contamination. Using the VITEK2 bacterial identification system, twenty-two bacteria isolated from these loci were biochemically described. Pseudomonas and Bacillus were the most dominant species. Furthermore, the soil microbiota collected from the most contaminated HMs site with these two were able to enhance the Helianthus annuus L. hyper-accumulation capacity significantly. Specifically, sunflower plants cultivated in soils with HMs adapted bacteria were able to accumulate about 1.7-2.5-folds more Zn and Cd in their shoots, respectively. CONCLUSION: The influence of PGPR to stimulate crop growth under stress is considered an effective strategy. Overall, our findings showed that plants cultivated in HMs contaminated sites in the presence of PGPR were able to accumulate significant amounts of HMs in several plant parts than those cultivated in soils lacking microbiota.


Asunto(s)
Helianthus , Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Helianthus/microbiología , Metales Pesados/análisis , Raíces de Plantas , Suelo , Contaminantes del Suelo/análisis
5.
Metab Eng Commun ; 7: e00079, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30370221

RESUMEN

Mandelic acid is an important aromatic fine chemical and is currently mainly produced via chemical synthesis. Recently, mandelic acid production was achieved by microbial fermentations using engineered Escherichia coli and Saccharomyces cerevisiae expressing heterologous hydroxymandelate synthases (hmaS). The best-performing strains carried a deletion of the gene encoding the first enzyme of the tyrosine biosynthetic pathway and therefore were auxotrophic for tyrosine. This was necessary to avoid formation of the competing intermediate hydroxyphenylpyruvate, the preferred substrate for HmaS, which would have resulted in the predominant production of hydroxymandelic acid. However, feeding tyrosine to the medium would increase fermentation costs. In order to engineer a tyrosine prototrophic mandelic acid-producing S. cerevisiae strain, we tested three strategies: (1) rational engineering of the HmaS active site for reduced binding of hydroxyphenylpyruvate, (2) compartmentalization of the mandelic acid biosynthesis pathway by relocating HmaS together with the two upstream enzymes chorismate mutase Aro7 and prephenate dehydratase Pha2 into mitochondria or peroxisomes, and (3) utilizing a feedback-resistant version of the bifunctional E. coli enzyme PheA (PheAfbr) in an aro7 deletion strain. PheA has both chorismate mutase and prephenate dehydratase activity. Whereas the enzyme engineering approaches were only successful in respect to reducing the preference of HmaS for hydroxyphenylpyruvate but not in increasing mandelic acid titers, we could show that strategies (2) and (3) significantly reduced hydroxymandelic acid production in favor of increased mandelic acid production, without causing tyrosine auxotrophy. Using the bifunctional enzyme PheAfbr turned out to be the most promising strategy, and mandelic acid production could be increased 12-fold, yielding titers up to 120 mg/L. Moreover, our results indicate that utilizing PheAfbr also shows promise for other industrial applications with S. cerevisiae that depend on a strong flux into the phenylalanine biosynthetic pathway.

6.
Water Air Soil Pollut ; 227: 186, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27358503

RESUMEN

AhHMA4 from Arabidopsis thaliana encodes Zn/Cd export protein that controls Zn/Cd translocation to shoots. The focus of this manuscript is the evaluation of AhHMA4 expression in tomato for mineral biofortification (more Zn and less Cd in shoots and fruits). Hydroponic and soil-based experiments were performed. Transgenic and wild-type plants were grown on two dilution levels of Knop's medium (1/10, 1/2) with or without Cd, to determine if mineral composition affects the pattern of root/shoot partitioning of both metals due to AhHMA4 expression. Facilitation of Zn translocation to shoots of 19-day-old transgenic tomato was noted only when plants were grown in the more diluted medium. Moreover, the expression pattern of Zn-Cd-Fe cross-homeostasis genes (LeIRT1, LeChln, LeNRAMP1) was changed in transgenics in a medium composition-dependent fashion. In plants grown in soil (with/without Cd) up to maturity, expression of AhHMA4 resulted in more efficient translocation of Zn to shoots and restriction of Cd. These results indicate the usefulness of AhHMA4 expression to improve the growth of tomato on low-Zn soil, also contaminated with Cd.

7.
Front Plant Sci ; 4: 404, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24187545

RESUMEN

Noccaea caerulescens (Nc) exhibits a very high constitutive expression of the heavy metal transporting ATPase, HMA4, as compared to the non-hyperaccumulator Arabidopsis thaliana (At), due to copy number expansion and altered cis-regulation. We screened a BAC library for HMA4 and found that HMA4 is triplicated in the genome of a N. caerulescens accession from a former Zn mine near La Calamine (LC), Belgium. We amplified multiple HMA4 promoter sequences from three calamine N. caerulescens accessions, and expressed AtHMA4 and different NcHMA4 cDNAs under At and Nc HMA4 promoters in the A. thaliana (Col) hma2hma4 double mutant. Transgenic lines expressing HMA4 under the At promoter were always fully complemented for root-to-shoot Zn translocation and developed normally at a 2-µM Zn supply, whereas the lines expressing HMA4 under Nc promoters usually showed only slightly enhanced root to shoot Zn translocation rates in comparison with the double mutant, probably owing to ectopic expression in the roots, respectively. When expression of the Zn deficiency responsive marker gene ZIP4 was tested, the transgenic lines expressing AtHMA4 under an NcHMA4-1-LC promoter showed on average a 7-fold higher expression in the leaves, in comparison with the double hma2hma4 mutant, showing that this construct aggravated, rather than alleviated the severity of foliar Zn deficiency in the mutant, possible owing to expression in the leaf mesophyll.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA