Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 480: 135827, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276736

RESUMEN

The Ni hyperaccumulator Odontarrhena chalcidica (formerly Alyssum murale), exhibits a significant capacity to accumulate Zn in the roots. However, the molecular mechanisms underlying the variation in Ni and Zn accumulation are poorly understood. Here, we isolated a homolog of heavy metal ATPase 3 from O. chalcidica (OcHMA3) and characterized its functions using heterologous systems. Phylogenetic analysis revealed that OcHMA3 protein shares 87.6 % identity with AtHMA3, with similar metal binding sites to other HMA3 proteins. Heterologous expression of OcHMA3 in yeast increased sensitivity to Cd, Ni and Zn, suggesting it functions as a broad-specificity transporter. Further investigation showed OcHMA3 is constitutively expressed in the roots and localized to the tonoplast. Overexpression of OcHMA3 in A. thaliana shoots increased its roots Zn concentrations by 41.9 % - 74.1 %. However, overexpression of OcHMA3 in roots enhanced its tolerance to Cd and increased roots Cd concentrations by 50.9 % - 90.6 %. Our findings indicated OcHMA3 is responsible for Zn sequestration in root vacuoles, likely leading to Zn retention in roots and subsequent Ni hyperaccumulation in shoots. This study elucidates the molecular mechanism of Ni and Zn accumulation in O. chalcidica, and identifies OcHMA3 as a potential gene for developing Zn-rich plants and for phytoextraction in Cd-contaminated soils.

2.
Int J Phytoremediation ; 26(10): 1643-1654, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38644603

RESUMEN

One of the most important oil crops in the world, sunflower (Helianthus annuus L.), is recognized to help in soil phytoremediation. Heavy metal (HM) contamination is one of the most abiotic challenges that may affect the growth and productivity of such an important crop plant. We studied the influence of HM-contaminated soils on metal homeostasis and the potential hypertolerance mechanisms in two sunflower Egyptian cultivars (V120 and S53). Both cultivars accumulated significantly higher cadmium concentrations in their roots compared to their shoots during Cd and Zn/Cd treatments. Higher root concentrations of 121 mg g-1 dry weight (DW) and 125 mg g-1 DW were measured in V120 plants compared to relatively lower values of 111 mg g-1 DW and 105 mg g-1 DW in the roots of S53 plants, respectively. Cadmium contamination significantly upregulated the expression of heavy metal ATPases (HaHMA4) in the shoots of V120 plants. On the other hand, their roots displayed a notable expression of HaHMA3. This study indicates that V120 plants accumulated and sequestered Cd in their roots. Therefore, it is advised to cultivate the V120 cultivar in areas contaminated with heavy metals as it is a promising Cd phytoremediator.


The current study confirms and provides new insights into the low Cd and Zn concentration responses of two cultivars of Helianthus annuus as potential HM phytoremediators. HMA3 and HMA4 mediated both root sequestration and reduced root-to-shoot translocation rates. Moreover, high CAT and POX activities may reduce oxidative damage and enhance plant tolerance. The V120 showed higher levels of Cd accumulation in its roots and could be a promising cultivar for the phytoremediation of this heavy metal. This work recalls that Cd tolerance is a trait that may vary among cultivars of the same species and should be taken into consideration in the phytomanagement of heavy metals in contaminated soils.


Asunto(s)
Biodegradación Ambiental , Cadmio , Helianthus , Contaminantes del Suelo , Zinc , Helianthus/metabolismo , Cadmio/metabolismo , Contaminantes del Suelo/metabolismo , Zinc/metabolismo , Egipto , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo
3.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686302

RESUMEN

The pollution of heavy metals is extremely serious in China, including zinc (Zn), copper (Cu), lead (Pb), and cadmium (Cd). Heavy-metal-transporting ATPase (HMA) belongs to a subfamily of the P-ATPase family, which absorbs and transports Zn, Cu, Pb, and Cd in plants. Here, we describe a ZmHMA-encoding HMA family protein that positively regulates Cd and Zn tolerance. The real-time fluorescence quantification (RT-PCR) results revealed that ZmHMA3 had a high expression in B73, and the expression of ZmHMA3 was sensitive to Cd in yeast cells, which was related to Cd accumulation in yeast. Additionally, the Arabidopsis thaliana homologous mutants of AtHMA2 showed Cd sensitivity compared with WT. The overexpressing ZmHMA3 plants showed higher tolerance under Cd and Zn stresses than the wild type. The overexpression of ZmHMA3 led to higher Cd and Zn accumulation in tissues based on the subcellular distribution analysis. We propose that ZmHMA3 improves maize tolerance to Cd and Zn stresses by absorbing and transporting Cd and Zn ions. This study elucidates the gene function of the ZmHMA3 response to Cd and Zn stress and provides a reference for improving the characteristics of heavy metals enrichment in existing maize varieties and the plant remediation technology of heavy-metal-contaminated soil.


Asunto(s)
Arabidopsis , Metales Pesados , Zinc , Cadmio/toxicidad , Zea mays/genética , Adenosina Trifosfatasas/genética , Plomo , Saccharomyces cerevisiae , Metales Pesados/toxicidad , Arabidopsis/genética
4.
BMC Microbiol ; 22(1): 174, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799112

RESUMEN

BACKGROUND: Phytoremediation is a green technology that removes heavy metal (HM) contamination from the environment by using HM plant accumulators. Among soil microbiota, plant growth promoting bacteria (PGPR) have a role influencing the metal availability and uptake. METHODS: This current study evaluates the plant growth promoting qualities of microbial flora isolated from rhizosphere, plant roots, and marine aquatic HMs polluted environments in Alexandria through several biochemical and molecular traits. Metal contents in both collected soils and plant tissues were measured. Transcript levels of marker genes (HMA3 and HMA4) were analyzed. RESULTS: Three terrestrial and one aquatic site were included in this study based on the ICP-MS identification of four HMs (Zn, Cd, Cu, and Ni) or earlier reports of HMs contamination. Using the VITEK2 bacterial identification system, twenty-two bacteria isolated from these loci were biochemically described. Pseudomonas and Bacillus were the most dominant species. Furthermore, the soil microbiota collected from the most contaminated HMs site with these two were able to enhance the Helianthus annuus L. hyper-accumulation capacity significantly. Specifically, sunflower plants cultivated in soils with HMs adapted bacteria were able to accumulate about 1.7-2.5-folds more Zn and Cd in their shoots, respectively. CONCLUSION: The influence of PGPR to stimulate crop growth under stress is considered an effective strategy. Overall, our findings showed that plants cultivated in HMs contaminated sites in the presence of PGPR were able to accumulate significant amounts of HMs in several plant parts than those cultivated in soils lacking microbiota.


Asunto(s)
Helianthus , Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Helianthus/microbiología , Metales Pesados/análisis , Raíces de Plantas , Suelo , Contaminantes del Suelo/análisis
5.
Plant Cell Physiol ; 63(5): 713-728, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35312772

RESUMEN

Understanding uptake and redistribution of essential minerals or sequestering of toxic elements is important for optimized crop production. Although the mechanisms controlling mineral transport have been elucidated in rice and other species, little is understood in sorghum-an important C4 cereal crop. Here, we assessed the genetic factors that govern grain ionome profiles in sorghum using recombinant inbred lines (RILs) derived from a cross between BTx623 and NOG (Takakibi). Pairwise correlation and clustering analysis of 22 elements, measured in sorghum grains harvested under greenhouse conditions, indicated that the parental lines, as well as the RILs, show different ionomes. In particular, BTx623 accumulated significantly higher levels of cadmium (Cd) than NOG, because of differential root-to-shoot translocation factors between the two lines. Quantitative trait locus (QTL) analysis revealed a prominent QTL for grain Cd concentration on chromosome 2. Detailed analysis identified SbHMA3a, encoding a P1B-type ATPase heavy metal transporter, as responsible for low Cd accumulation in grains; the NOG allele encoded a functional HMA3 transporter (SbHMA3a-NOG) whose Cd-transporting activity was confirmed by heterologous expression in yeast. BTx623 possessed a truncated, loss-of-function SbHMA3a allele. The functionality of SbHMA3a in NOG was confirmed by Cd concentrations of F2 grains derived from the reciprocal cross, in which the NOG allele behaved in a dominant manner. We concluded that SbHMA3a-NOG is a Cd transporter that sequesters excess Cd in root tissues, as shown in other HMA3s. Our findings will facilitate the isolation of breeding cultivars with low Cd in grains or in exploiting high-Cd cultivars for phytoremediation.


Asunto(s)
Oryza , Contaminantes del Suelo , Sorghum , Alelos , Cadmio/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo , Oryza/genética , Oryza/metabolismo , Fitomejoramiento , Contaminantes del Suelo/metabolismo , Sorghum/genética , Sorghum/metabolismo
6.
Comput Struct Biotechnol J ; 18: 2709-2722, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101609

RESUMEN

A series of complex transport, storage and regulation mechanisms control iron metabolism and thereby maintain iron homeostasis in plants. Despite several studies on iron deficiency responses in different plant species, these mechanisms remain unclear in the allohexaploid wheat, which is the most widely cultivated commercial crop. We used RNA sequencing to reveal transcriptomic changes in the wheat flag leaves and roots, when subjected to iron limited conditions. We identified 5969 and 2591 differentially expressed genes (DEGs) in the flag leaves and roots, respectively. Genes involved in the synthesis of iron ligands i.e., nicotianamine (NA) and deoxymugineic acid (DMA) were significantly up-regulated during iron deficiency. In total, 337 and 635 genes encoding transporters exhibited altered expression in roots and flag leaves, respectively. Several genes related to MAJOR FACILITATOR SUPERFAMILY (MFS), ATP-BINDING CASSETTE (ABC) transporter superfamily, NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN (NRAMP) family and OLIGOPEPTIDE TRANSPORTER (OPT) family were regulated, indicating their important roles in combating iron deficiency stress. Among the regulatory factors, the genes encoding for transcription factors of BASIC HELIX-LOOP-HELIX (bHLH) family were highly up-regulated in both roots and the flag leaves. The jasmonate biosynthesis pathway was significantly altered but with notable expression differences between roots and flag leaves. Homoeologs expression and induction bias analysis revealed subgenome specific differential expression. Our findings provide an integrated overview on regulated molecular processes in response to iron deficiency stress in wheat. This information could potentially serve as a guideline for breeding iron deficiency stress tolerant crops as well as for designing appropriate wheat iron biofortification strategies.

7.
New Phytol ; 215(2): 687-698, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28574163

RESUMEN

Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear. Here, the heavy metal ATPase 3 (SpHMA3) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola. RNA interference (RNAi)-mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii. Heterologous expression of SpHMA3 in Saccharomyces cerevisiae showed Cd-specific transport activity. SpHMA3 was highly expressed in the shoots and the protein was localized to the tonoplast. The SpHMA3-RNAi lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing SpHMA3 in the nonhyperaccumulating ecotype of S. alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn. These results indicate that elevated expression of the tonoplast-localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S. plumbizincicola in Cd-contaminated soils.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cadmio/farmacocinética , Sedum/efectos de los fármacos , Sedum/metabolismo , Zinc/farmacocinética , Adenosina Trifosfatasas/genética , Cadmio/toxicidad , Clonación Molecular , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Ecotipo , Regulación de la Expresión Génica de las Plantas , Metales Pesados/farmacocinética , Metales Pesados/toxicidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Interferencia de ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sedum/genética , Distribución Tisular , Zinc/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA