Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Cells ; 13(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38534327

RESUMEN

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, yet the cellular and molecular mechanisms underlying the AF substrate remain unclear. Isolevuglandins (IsoLGs) are highly reactive lipid dicarbonyl products that mediate oxidative stress-related injury. In murine hypertension, the lipid dicarbonyl scavenger 2-hydroxybenzylamine (2-HOBA) reduced IsoLGs and AF susceptibility. We hypothesized that IsoLGs mediate detrimental pathophysiologic effects in atrial cardiomyocytes that promote the AF substrate. Using Seahorse XFp extracellular flux analysis and a luminescence assay, IsoLG exposure suppressed intracellular ATP production in atrial HL-1 cardiomyocytes. IsoLGs caused mitochondrial dysfunction, with reduced mitochondrial membrane potential, increased mitochondrial reactive oxygen species (ROS) with protein carbonylation, and mitochondrial DNA damage. Moreover, they generated cytosolic preamyloid oligomers previously shown to cause similar detrimental effects in atrial cells. In mouse atrial and HL-1 cells, patch clamp experiments demonstrated that IsoLGs rapidly altered action potentials (AP), implying a direct effect independent of oligomer formation by reducing the maximum Phase 0 upstroke slope and shortening AP duration due to ionic current modifications. IsoLG-mediated mitochondrial and electrophysiologic abnormalities were blunted or totally prevented by 2-HOBA. These findings identify IsoLGs as novel mediators of oxidative stress-dependent atrial pathophysiology and support the investigation of dicarbonyl scavengers as a novel therapeutic approach to prevent AF.


Asunto(s)
Fibrilación Atrial , Bencilaminas , Enfermedades Mitocondriales , Animales , Ratones , Miocitos Cardíacos/metabolismo , Lípidos/química , Especies Reactivas de Oxígeno/metabolismo
2.
Biomater Adv ; 159: 213819, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430724

RESUMEN

Extracellular matrix (ECM) regulates cellular responses through mechanotransduction. The standard approach of in vitro culturing on plastic surfaces overlooks this phenomenon, so there is a need for biocompatible materials that exhibit adjustable mechanical and structural properties, promote cell adhesion and proliferation at low cost and for use in 2D or 3D cell cultures. This study presents a new tunable hydrogel system prepared from high-molecular hyaluronic acid (HA), Bovine serum albumin (BSA), and gelatin cross-linked using EDC/NHS. Hydrogels with Young's moduli (E) ranging from subunit to units of kilopascals were prepared by gradually increasing HA and BSA concentrations. Concentrated high-molecular HA network led to stiffer hydrogel with lower cluster size and swelling capacity. Medium and oxygen diffusion capability of all hydrogels showed they are suitable for 3D cell cultures. Mechanical and structural changes of mouse embryonic fibroblasts (MEFs) on hydrogels were compared with cells on standard cultivation surfaces. Experiments showed that hydrogels have suitable mechanical and cell adhesion capabilities, resulting in structural changes of actin filaments. Lastly, applying hydrogel for a more complex HL-1 cell line revealed improved mechanical and electrophysiological contractile properties.


Asunto(s)
Ácido Hialurónico , Hidrogeles , Animales , Ratones , Hidrogeles/farmacología , Ácido Hialurónico/farmacología , Ácido Hialurónico/química , Mecanotransducción Celular , Fibroblastos , Materiales Biocompatibles
3.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1032225

RESUMEN

Objective @#To investigate the effect and mechanism of endothelin-1 (ET-1) on atrial fibrosis in Atrial fibrillation (AF) rats .@*Methods @# Fourteen adult male SD rats were randomly divided into normal control ( NC) group and Atrial fibrillation (AF) group . The rat model of Atrial fibrillation was established by inj ecting 0.1 ml/ 100g CaCl2 Ach mixture into the tail vein once a day for one week . The control group was inj ected with the same dose of normal saline . An electrocardiogram of normal or atrial fibrillation was recorded on the first day and the eighth day in each group , and echocardiography was used to monitor atrial size and cardiac function . The fibrosis of atrial was ob served using Masson and HE staining. The expression of endothelin-1 ( ET-1) , collagen-I ( Col-I) , transforming growth factor-β(TGF-β) and the store operated calcium channel (SOCC) protein Orai1 , stromal in teraction molecule 1 (STIM1) in atrial tissue were detected by Western blot. HL-1 cells were cultured and treated with gradient concentration of ET-1 for 24 hours . Western blot was used to ob serve changes in the expression of TGF-β, Orai1 and STIM1 proteins in ET-1 /SOCC/TGF βsignaling pathway of HL-1 cells . Small interfering RNA ( siRNA) transfection method was used to knock down the expression of Orai1 in HL-1 cells , then the cells were treated with appropriate concentrations of ET-1 for 24 hours , and the expression of TGF-β protein in HL-1 cells was detected by Western blot.@*Results @#Compared with the control group , echocardiography showed a significant in crease in left atrial diameter (LAD) of the heart in atrial fibrillation rats (P < 0.05) . The HE and Masson staining results showed significant fibrosis in the myocardial tissue of AF group rats (P < 0.05) , and the Western blot re sults indicated the expression of ET-1 , Orai1 , STIM1 , TGF-β and COL-Ⅰ in the myocardial tissue of AF group significantly increased compared to the NC group (P < 0.05) . After ET 1 treatment of HL-1 cells , the protein ex pression of Orai1 , STIM1 and TGF βincreased (P < 0.05) , while knocking down Orai1 in HL-1 cells , ET-1 treat ment no longer caused the expression of TGF-β a significant upregulation .@*Conclusion @#AF caused by atrial fibril lation results in a significant increase in ET-1 expression in atrial tissue , and ET-1 /SOCC/TGF-β signal pathway promotes atrial fibrillation and fibrosis .

4.
Apoptosis ; 29(7-8): 1271-1287, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38127284

RESUMEN

Viral myocarditis (VMC) is the major reason for sudden cardiac death among both children and young adults. Of these, coxsackievirus B3 (CVB3) is the most common causative agent of myocarditis. Recently, the role of signaling pathways in the pathogenesis of VMC has been evaluated in several studies, which has provided a new perspective on identifying potential therapeutic targets for this hitherto incurable disease. In the present study, in vivo and in vitro experiments showed that CVB3 infection leads to increased Bim expression and triggers apoptosis. In addition, by knocking down Bim using RNAi, we further confirmed the biological function of Bim in apoptosis induced by CVB3 infection. We additionally found that Bim and forkhead box O1 class (FOXO1) inhibition significantly increased the viability of CVB3-infected cells while blocking viral replication and viral release. Moreover, CVB3-induced Bim expression was directly dependent on FOXO1 acetylation, which is catalyzed by the co-regulation of CBP and SirTs. Furthermore, the acetylation of FOXO1 was an important step in Bim activation and apoptosis induced by CVB3 infection. The findings of this study suggest that CVB3 infection induces apoptosis through the FOXO1 acetylation-Bim pathway, thus providing new insights for developing potential therapeutic targets for enteroviral myocarditis.


Asunto(s)
Apoptosis , Proteína 11 Similar a Bcl2 , Infecciones por Coxsackievirus , Enterovirus Humano B , Proteína Forkhead Box O1 , Miocarditis , Miocitos Cardíacos , Proteína 11 Similar a Bcl2/metabolismo , Proteína 11 Similar a Bcl2/genética , Apoptosis/genética , Miocitos Cardíacos/virología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Animales , Miocarditis/virología , Miocarditis/metabolismo , Miocarditis/genética , Miocarditis/patología , Enterovirus Humano B/fisiología , Infecciones por Coxsackievirus/genética , Infecciones por Coxsackievirus/virología , Infecciones por Coxsackievirus/metabolismo , Infecciones por Coxsackievirus/patología , Acetilación , Humanos , Masculino , Ratones , Transducción de Señal , Ratas
5.
Trop Med Health ; 51(1): 68, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062533

RESUMEN

BACKGROUND: Chagas disease can lead to life-threatening cardiac manifestations. Regional factors, including genetic characteristics of circulating Trypanosoma cruzi (T. cruzi), have attracted attention as likely determinants of Chagas disease phenotypic expression and Chagas cardiomyopathy (CCM) progression. Our objective was to elucidate the differential transcriptomic signatures of cardiomyocytes resulting from infection with genetically discrete T. cruzi strains and explore their relationships with CCM pathogenesis and progression. METHODS: HL-1 rodent cardiomyocytes were infected with T. cruzi trypomastigotes of the Colombian, Y, or Tulahuen strain. RNA was serially isolated post-infection for microarray analysis. Enrichment analyses of differentially expressed genes (fold-change ≥ 2 or ≤ 0.5) highlighted over-represented biological pathways. Intracellular levels of reactive oxygen species (ROS) were compared between T. cruzi-infected and non-infected HL-1 cardiomyocytes. RESULTS: We found that oxidative stress-related gene ontology terms (GO terms), 'Hypertrophy model', 'Apoptosis', and 'MAPK signaling' pathways (all with P < 0.01) were upregulated. 'Glutathione and one-carbon metabolism' pathway, and 'Cellular nitrogen compound metabolic process' GO term (all with P < 0.001) were upregulated exclusively in the cardiomyocytes infected with the Colombian/Y strains. Mean intracellular levels of ROS were significantly higher in the T. cruzi-infected cardiomyocytes compared to the non-infected (P < 0.0001). CONCLUSIONS: The upregulation of oxidative stress-related and hypertrophic pathways constitutes the universal hallmarks of the cardiomyocyte response elicited by T. cruzi infection. Nitrogen metabolism upregulation and glutathione metabolism imbalance may implicate a relationship between nitrosative stress and poor oxygen radicals scavenging in the unique pathophysiology of Chagas cardiomyopathy.

6.
Cells ; 12(24)2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38132169

RESUMEN

Atrial fibrillation (AF), characterised by irregular high-frequency contractions of the atria of the heart, is of increasing clinical importance. The reasons are the increasing prevalence and thromboembolic complications caused by AF. So-called atrial remodelling is characterised, among other things, by atrial dilatation and fibrotic remodelling. As a result, AF is self-sustaining and forms a procoagulant state. But hypercoagulation not only appears to be the consequence of AF. Coagulation factors can exert influence on cells via protease-activated receptors (PAR) and thereby the procoagulation state could contribute to the development and maintenance of AF. In this work, the influence of FXa on Heart Like-1 (HL-1) cells, which are murine adult atrial cardiomyocytes (immortalized), was investigated. PAR1, PAR2, and PAR4 expression was detected. After incubations with FXa (5-50 nM; 4-24 h) or PAR1- and PAR2-agonists (20 µM; 4-24 h), no changes occurred in PAR expression or in the inflammatory signalling cascade. There were no time- or concentration-dependent changes in the phosphorylation of the MAP kinases ERK1/2 or the p65 subunit of NF-κB. In addition, there was no change in the mRNA expression of the cell adhesion molecules (ICAM-1, VCAM-1, fibronectin). Thus, FXa has no direct PAR-dependent effects on HL-1 cells. Future studies should investigate the influence of FXa on human cardiomyocytes or on other cardiac cell types like fibroblasts.


Asunto(s)
Fibrilación Atrial , Factor Xa , Animales , Ratones , Factor Xa/metabolismo , FN-kappa B/metabolismo , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Transducción de Señal
7.
Microbiol Resour Announc ; 12(11): e0055823, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37905826

RESUMEN

We present the complete genome sequence of Enterococcus faecalis strain HL1, isolated from infant feces. E. faecalis gains significant attention for its therapeutic potential. The genome of E. faecalis HL1 consists of a 2.7 Mb circular chromosome with no plasmids, and it contains a total of 2,546 predicted coding genes.

8.
Environ Toxicol ; 38(10): 2499-2508, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37421283

RESUMEN

OBJECTIVE: Pirarubicin (THP) is a widely used antitumor drug in clinical practice, but its cardiotoxicity limits its use. There is an urgent need to find drugs to alleviate the cardiotoxicity of THP. This study aimed to investigate the effect and mechanism of miR-494-3p on THP-induced cardiomyocytes. METHODS: THP induced immortalized mouse cardiomyocytes HL-1, silenced or overexpressed miR-494-3p. The effects of miR-494-3p on HL-1 contained in THP were investigated by CCK8, flow cytometry, ROS detection, JC-1 mitochondrial membrane potential detection, TUNEL cell apoptosis detection, RT-qPCR, and Western blot. RESULTS: miR-494-3p could reduce cell viability, increase oxidative damage, and promote cell apoptosis; at the same time, it inhibited the expression of MDM4, promoted the activation of p53, and promoted the expression of apoptosis-related proteins. MiR-494-3p inhibitors have the opposite effect. CONCLUSION: miR-494-3p can aggravate THP damage to HL-1, which may be achieved by downregulating MDM4 and promoting p53. miR-494-3p is one of the important miRNAs in THP-induced cardiotoxicity, which provides theoretical support for its possible use as a therapeutic target for THP-induced cardiovascular disease.


Asunto(s)
MicroARNs , Transducción de Señal , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Miocitos Cardíacos , Cardiotoxicidad/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Apoptosis
9.
PeerJ ; 11: e15315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37220525

RESUMEN

Background: Cardiotoxicity is a side effect of the anthracycline broad-spectrum anti-tumor agent, doxorubicin (DOX). Hyperoside, a flavonoid glycoside extracted from many herbs, has anti-apoptotic and anticancer properties. However, its impact on the alleviation of DOX-induced apoptosis in cardiomyocytes remains elusive. Methods: The HL-1 cell line was treated with 100 µ M hyperoside for 1 h prior to treatment with 100 µ M hyperoside and 1 µ M DOX for 24 h. The cell counting kit-8 (CCK-8) assay was used to detect cell viability; DCFH-DA fluorescent probe was used to detect (reactive oxygen species) ROS; biochemical methods were used to detect the activity of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA); the degree of apoptosis following DOX insult was assessed using immunofluorescence staining and terminal deoxynucleotidyl transferase mediated deoxy uridine triphosphate nick end labeling (TUNEL) assay; the change in protein expression of apoptosis signal-regulating kinase 1 (ASK1), p38, and apoptosis markers was determined using western blot. Results: Hyperoside ameliorated DOX-induced oxidative stress in HL-1 cells, up-regulated GSH, SOD and CAT activity, reduced ROS production and inhibited MDA overproduction. Moreover, in addition to promoting HL-1 cell apoptosis, DOX administration also increased B-cell lymphoma (Bcl)-2-associated X-protein and cleaved caspase-3 protein levels and decreased Bcl-2 protein level. Hyperoside therapy, however, significantly reversed the impact of DOX on the cardiomyocytes. Mechanically, DOX treatment increased the phosphorylation of the ASK1/p38 axis whereas hyperoside treatment attenuated those changes. In a further step, hyperoside synergizes with DOX to kill MDA-MB-231 cells. Conclusions: Hyperoside protects HL-1 cells from DOX-induced cardiotoxicity by inhibiting the ASK1/p38 signaling pathway. Meanwhile, hyperoside maintained the cytotoxicity of DOX in MDA-MB-231 cells.


Asunto(s)
Cardiotoxicidad , MAP Quinasa Quinasa Quinasa 5 , Humanos , Especies Reactivas de Oxígeno , Doxorrubicina , Apoptosis
10.
Artículo en Inglés | MEDLINE | ID: mdl-36881875

RESUMEN

The development of novel three-dimensional (3D) nanomaterials combining high biocompatibility, precise mechanical characteristics, electrical conductivity, and controlled pore size to enable cell and nutrient permeation is highly sought after for cardiac tissue engineering applications including repair of damaged heart tissues following myocardial infarction and heart failure. Such unique characteristics can collectively be found in hybrid, highly porous tridimensional scaffolds based on chemically functionalized graphene oxide (GO). By exploiting the rich reactivity of the GO's basal epoxydic and edge carboxylate moieties when interacting, respectively, with NH2 and NH3+ groups of linear polyethylenimines (PEIs), 3D architectures with variable thickness and porosity can be manufactured, making use of the layer-by-layer technique through the subsequent dipping in GO and PEI aqueous solutions, thereby attaining enhanced compositional and structural control. The elasticity modulus of the hybrid material is found to depend on scaffold's thickness, with the lowest value of 13 GPa obtained in samples containing the highest number of alternating layers. Thanks to the amino-rich composition of the hybrid and the established biocompatibility of GO, the scaffolds do not exhibit cytotoxicity; they promote cardiac muscle HL-1 cell adhesion and growth without interfering with the cell morphology and increasing cardiac markers such as Connexin-43 and Nkx 2.5. Our novel strategy for scaffold preparation thus overcomes the drawbacks associated with the limited processability of pristine graphene and low GO conductivity, and it enables the production of biocompatible 3D GO scaffolds covalently functionalized with amino-based spacers, which is advantageous for cardiac tissue engineering applications. In particular, they displayed a significant increase in the number of gap junctions compared to HL-1 cultured on CTRL substrates, which render them key components for repairing damaged heart tissues as well as being used for 3D in vitro cardiac modeling investigations.

11.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835078

RESUMEN

Adenosine, an endogenous nucleoside, plays a critical role in maintaining homeostasis during stressful situations, such as energy deprivation or cellular damage. Therefore, extracellular adenosine is generated locally in tissues under conditions such as hypoxia, ischemia, or inflammation. In fact, plasma levels of adenosine in patients with atrial fibrillation (AF) are elevated, which also correlates with an increased density of adenosine A2A receptors (A2ARs) both in the right atrium and in peripheral blood mononuclear cells (PBMCs). The complexity of adenosine-mediated effects in health and disease requires simple and reproducible experimental models of AF. Here, we generate two AF models, namely the cardiomyocyte cell line HL-1 submitted to Anemonia toxin II (ATX-II) and a large animal model of AF, the right atrium tachypaced pig (A-TP). We evaluated the density of endogenous A2AR in those AF models. Treatment of HL-1 cells with ATX-II reduced cell viability, while the density of A2AR increased significantly, as previously observed in cardiomyocytes with AF. Next, we generated the animal model of AF based on tachypacing pigs. In particular, the density of the key calcium regulatory protein calsequestrin-2 was reduced in A-TP animals, which is consistent with the atrial remodelling shown in humans suffering from AF. Likewise, the density of A2AR in the atrium of the AF pig model increased significantly, as also shown in the biopsies of the right atrium of subjects with AF. Overall, our findings revealed that these two experimental models of AF mimicked the alterations in A2AR density observed in patients with AF, making them attractive models for studying the adenosinergic system in AF.


Asunto(s)
Fibrilación Atrial , Receptor de Adenosina A2A , Animales , Humanos , Adenosina/metabolismo , Fibrilación Atrial/metabolismo , Atrios Cardíacos/metabolismo , Leucocitos Mononucleares/metabolismo , Miocitos Cardíacos/metabolismo , Receptor de Adenosina A2A/metabolismo , Porcinos
12.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768439

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disease characterized by fibrofatty replacement of the myocardium. Deleterious variants in desmosomal genes are the main cause of ACM and lead to common and gene-specific molecular alterations, which are not yet fully understood. This article presents the first systematic in vitro study describing gene and protein expression alterations in desmosomes, electrical conduction-related genes, and genes involved in fibrosis and adipogenesis. Moreover, molecular and functional alterations in calcium handling were also characterized. This study was performed d with HL1 cells with homozygous knockouts of three of the most frequently mutated desmosomal genes in ACM: PKP2, DSG2, and DSC2 (generated by CRISPR/Cas9). Moreover, knockout and N-truncated clones of DSP were also included. Our results showed functional alterations in calcium handling, a slower calcium re-uptake was observed in the absence of PKP2, DSG2, and DSC2, and the DSP knockout clone showed a more rapid re-uptake. We propose that the described functional alterations of the calcium handling genes may be explained by mRNA expression levels of ANK2, CASQ2, ATP2A2, RYR2, and PLN. In conclusion, the loss of desmosomal genes provokes alterations in calcium handling, potentially contributing to the development of arrhythmogenic events in ACM.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Calcio , Humanos , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/metabolismo , Desmosomas/genética , Desmosomas/metabolismo , Miocardio/metabolismo , Corazón
13.
Biosens Bioelectron ; 223: 115034, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36574741

RESUMEN

The ectopic co-expression of taste and olfactory receptors in cardiomyocytes provides not only possibilities for the construction of biomimetic gustatory and olfactory sensors but also promising novel therapeutic targets for tachycardia treatment. Here, bitter taste and olfactory receptors endogenously expressed in HL-1 cells were verified by RT-PCR and immunofluorescence staining. Then HL-1 cardiomyocyte-based integrated gustatory and olfactory sensing array coupling with the microelectrode array (MEA) was first constructed for drugs screening and evaluation for tachycardia treatment. The MEA sensor detected the extracellular field potentials and reflected the systolic-diastolic properties of cardiomyocytes in real time in a label-free and non-invasive way. The in vitro tachycardia model was constructed using isoproterenol as the stimulator. The proposed sensing array facilitated potential drug screening for tachycardia treatment, such as salicin, artemisinin, xanthotoxin, and azelaic acid which all activated specific receptors on HL-1 cells. IC50 values for four potential drugs were calculated to be 0.0036 µM, 309.8 µM, 14.68 µM, and 0.102 µM, respectively. Visualization analysis with heatmaps and PCA cluster showed that different taste and odorous drugs could be easily distinguished. The mean inter-class Euclidean distance between different bitter drugs was 1.681, which was smaller than the distance between bitter and odorous drugs of 2.764. And the inter-class distance was significantly higher than the mean intra-class Euclidean distance of 1.172. In summary, this study not only indicates a new path for constructing novel integrated gustatory and olfactory sensors but also provides a powerful tool for the quantitative evaluation of potential drugs for tachycardia treatment.


Asunto(s)
Técnicas Biosensibles , Receptores Odorantes , Humanos , Miocitos Cardíacos , Evaluación Preclínica de Medicamentos , Biomimética , Olfato , Gusto , Taquicardia
14.
Front Cardiovasc Med ; 9: 984813, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158816

RESUMEN

To investigate the protective effects of Clerodendranthus spicatus (Thunb.) C. Y. Wu extract (CSTE) on oxidative stress injury in HL-1 mouse cardiomyocytes induced by 2,2'-azo (2-methylpropamidine) dihydrochloride (AAPH, 1 mmol/L), HL-1 cells were co-cultured with different concentrations (10-100 µg/mL) of the CSTE for 24 h. A cell damage model was established by continuously culturing the cells in Dulbecco's Modified Eagle Medium plus AAPH for 4 h. Cell survival rates were measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay, and by measuring intracellular malondialdehyde (MDA) content. MDA and total reactive oxygen species (ROS) levels were determined by thiobarbituric acid colorimetry and the 2',7'-dihydrodichlorofluorescent sodium yellow diacetate probe, respectively. Apoptosis was measured by flow cytometry. The intracellular catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione s-transferase (GST), γ-glutamylcysteine synthetase (γ-GCS), and glutathione (GSH) contents were determined by colorimetric methods. CSTE content was determined by high performance liquid chromatography. The CSTE pretreatment improved survival rates in damaged HL-1 cells, reduced total intracellular ROS and MDA levels, and reduced apoptosis. The CSTE also increased the activities of the antioxidant enzymes (CAT, SOD, GSH-Px, and GST), as well as the γ-GCS and GSH levels in damaged cells. Real-time fluorescence quantitative polymerase chain reaction analysis indicated that the CSTE upregulated CAT, SOD1, and GSH-Px mRNA expression levels. Additionally, the CSTE reduced MDA and ROS levels in HL-1 cells by improving the endogenous antioxidant system; thus, alleviating the oxidative stress damage caused by AAPH. Our compositional analyses revealed that the CSTE contained caffeic acid, isoquercetin, rosmarinic acid, luteolin, and baicalin. The CSTE demonstrates antioxidant and protective effects in myocardial cells.

15.
Hum Gene Ther ; 33(19-20): 1091-1100, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36053712

RESUMEN

We used transverse aortic constriction (TAC) in mice to test the hypothesis that urocortin 2 (Ucn2) gene transfer would increase left ventricular (LV) systolic and diastolic function in the pressure-stressed LV. Three groups were studied: (1) control mice (no TAC); (2) mice that received saline 6 weeks after TAC; and (3) mice that received Ucn2 gene transfer 6 weeks after TAC, using adeno-associated virus 8 encoding murine Ucn2 (AAV8.mUcn2; 2 × 1013 genome copies (gc)/kg, i.v. per mouse). Echocardiography was performed 6 and 12 weeks after TAC. In terminal studies 12 weeks after TAC, rates of LV pressure development and decay and Tau were measured, and LV cardiac myocytes (CMs) were isolated and cytosolic Ca2+ transients and sarcomere shortening rates recorded. Reverse transcription polymerase chain reaction and immunoblotting were used to measure key proteins in LV samples. A CM cell line (HL-1) was used to explore mechanisms. Concentric LV hypertrophy was evident on echocardiography 6 weeks after TAC. Twelve weeks after TAC, LV ejection fraction (EF) was higher in mice that received Ucn2 gene transfer (TAC-saline: 65% ± 3%; TAC-Ucn2: 75% ± 2%; p = 0.01), as was LV peak +dP/dt (1.9-fold increase; p = 0.001) and LV peak -dP/dt (1.7-fold increase; p = 0.017). Tau was more rapid (23% reduction, p = 0.02), indicating improved diastolic function. The peak rates of sarcomere shortening (p = 0.002) and lengthening (p = 0.002) were higher in CMs from TAC-Ucn2 mice, and Tau was reduced (p = 0.001). LV (Ser-16) phosphorylation of phospholamban (PLB) was increased in TAC-Ucn2 mice (p = 0.025), and also was increased in HL-1 cells treated with angiotensin II to induce hypertrophy and incubated with Ucn2 peptide (p = 0.001). Ucn2 gene transfer in TAC-induced heart failure with preserved ejection fraction increased cardiac function in the intact LV and provided corresponding benefits in CMs isolated from study animals, including increased myofilament Ca2+ sensitivity during contraction. The mechanism includes enhanced CM Ca2+ handling associated with increased (Ser-16)-PLB.


Asunto(s)
Angiotensina II , Urocortinas , Ratones , Animales , Urocortinas/genética , Urocortinas/metabolismo , Presión Ventricular , Terapia Genética , Función Ventricular Izquierda/genética , Hipertrofia , Ratones Endogámicos C57BL
16.
Bioengineered ; 13(5): 13534-13543, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35659197

RESUMEN

The prevalence of atrial fibrillation (AF), which is one of the common arrhythmias in clinics, is increasing sharply and has affected millions of patients, which is expected to triple by 2050. The purpose of the study was to explore the regulatory relationship between Src-homology domain 2 containing protein tyrosine phosphatase-1 (SHP-1) and proto-oncogene tyrosine-protein kinase Src (c-Src) and the regulation of Connexins 43 (Cx43), and its effect on AF was also studied. Mouse atrial myocyte line (HL-1 cell line) was used as the research object. After overexpression of SHP-1, the expressions of p-c-Src, Cx43, and SHP-1 were detected by Western blot and cellular immunofluorescence, respectively. The location and interaction of SHP-1 and c-Src in the cells were detected by immunofluorescence co-localization and co-immunoprecipitation (Co-IP). The regulation of c-Src and Cx43 was detected by DNA pull down, chromatin co-immunoprecipitation (CHIP), and dual-luciferase reporter system. The results revealed that overexpression of SHP-1 could inhibit the phosphorylation and activation of c-Src and increase the expression of Cx43. Moreover, there was a direct binding between SHP-1 and c-Src, and c-Src could bind to the promoter region of Cx43 and inhibit the transcription of Cx43. In conclusion, SHP-1 could bind to c-Src and inhibit the activity of c-Src, thus enhancing the transcriptional activation of Cx43 and improving the function of gap junction.


Asunto(s)
Conexina 43 , Tirosina , Animales , Conexina 43/genética , Conexina 43/metabolismo , Ratones , Fosforilación , Proteína Fosfatasa 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proto-Oncogenes , Activación Transcripcional/genética , Tirosina/metabolismo
17.
Cells ; 11(10)2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35626746

RESUMEN

Recently, we have shown that the physiological roles of a multifunctional protein fructose 1,6-bisphosphatase 2 (FBP2, also called muscle FBP) depend on the oligomeric state of the protein. Here, we present several lines of evidence that in HL-1 cardiomyocytes, a forced, chemically induced reduction in the FBP2 dimer-tetramer ratio that imitates AMP and NAD+ action and restricts FBP2-mitochondria interaction, results in an increase in Tau phosphorylation, augmentation of FBP2-Tau and FBP2-MAP1B interactions, disturbance of tubulin network, marked reduction in the speed of mitochondrial trafficking and increase in mitophagy. These results not only highlight the significance of oligomerization for the regulation of FBP2 physiological role in the cell, but they also demonstrate a novel, important cellular function of this multitasking protein-a function that might be crucial for processes that take place during physiological and pathological cardiac remodeling, and during the onset of diseases which are rooted in the destabilization of MT and/or mitochondrial network dynamics.


Asunto(s)
Mitocondrias , Miocitos Cardíacos , Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mitofagia , Miocitos Cardíacos/metabolismo , Tubulina (Proteína)/metabolismo
18.
Mol Biotechnol ; 64(10): 1076-1087, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35397056

RESUMEN

Exosomes-related microRNAs (miRNAs) have been considered to be the significant biomarkers contributing to the development of atrial fibrillation (AF). We observed the implicit mechanism of exosomes-miR-148a derived from bone marrow mesenchymal stem cells (BMSCs) in AF. The AF cell and mice models were established firstly. QRT-PCR and Western blot analysis were applied to detect the expression of miR-148a, SPARC-associated modular calcium-binding protein 2 (SMOC2), Bcl-2, Bax, and caspase-3. BMSCs were separated from healthy mice and exosomes were obtained from BMSCs. BMSCs were transfected with mimics and inhibitor, and HL-1 cells were treated with mimics and pcDNA3.1. MTT assay were used to detect cell viability of cells. Flow cytometric analysis and TUNEL analysis were used for detecting cell apoptosis of cells. In our study, exosomes derived from BMSCs inhibited the development of AF, and miR-148a acted a vital role in this segment. SMOC2 was a target gene of miR-148a and promoted apoptosis of HL-1 cells. Additionally, miR-148a mimics decreased cellular apoptosis, eliminated SMOC2 expression, and elevated Bcl-2 expression in AF-treated cells. Collectively, miR-148a overexpressed in BMSC-exosomes restrained cardiomyocytes apoptosis by inhibiting SMOC2.


Asunto(s)
Fibrilación Atrial , Exosomas , Células Madre Mesenquimatosas , MicroARNs , Animales , Apoptosis/genética , Fibrilación Atrial/metabolismo , Células de la Médula Ósea/metabolismo , Proteínas de Unión al Calcio , Exosomas/genética , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
19.
Antioxidants (Basel) ; 11(2)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35204269

RESUMEN

Carvacrol (CAR), a natural phenolic monoterpene, possesses different biological activities, such as anti-inflammatory and antioxidant activities. The current study aimed to evaluate the response of HL-1 cardiomyocytes to an inflammatory stimulus triggered by lipopolysaccharide from Porphyromonas gingivalis (LPS-G), alone or in co-treatment with CAR, to investigate the potential protective role of CAR in the inflammatory process through modulation of the TLR4/NFκB/NALP3/IL-1ß pathway and ROS production. In an in vitro experiment, HL-1 cardiomyocytes were exposed to LPS-G and incubated with CAR. We evaluated the anti-inflammatory effect of CAR by the reduction in TLR4, NFκB, NALP3, and IL-1ß expression using immunofluorescence staining. Western blot analysis also validated the modulation of the TLR4/NFκB/NALP3/IL-1ß pathway. ROS analyses confirmed the protective effects of CAR. Our results suggest that CAR could provide a significant protection role against inflammatory stimulus generated by LPS-G, involving the suppression of the TLR4/NFκB/NALP3/IL-1ß signaling pathway.

20.
Int J Mol Sci ; 23(2)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35054841

RESUMEN

Arrhythmogenic cardiomyopathy is a heritable heart disease associated with desmosomal mutations, especially premature termination codon (PTC) variants. It is known that PTC triggers the nonsense-mediated decay (NMD) mechanism. It is also accepted that PTC in the last exon escapes NMD; however, the mechanisms involving NMD escaping in 5'-PTC, such as reinitiation of translation, are less known. The main objective of the present study is to evaluate the likelihood that desmosomal genes carrying 5'-PTC will trigger reinitiation. HL1 cell lines were edited by CRISPR/Cas9 to generate isogenic clones carrying 5'-PTC for each of the five desmosomal genes. The genomic context of the ATG in-frame in the 5' region of desmosomal genes was evaluated by in silico predictions. The expression levels of the edited genes were assessed by Western blot and real-time PCR. Our results indicate that the 5'-PTC in PKP2, DSG2 and DSC2 acts as a null allele with no expression, whereas in the DSP and JUP gene, N-truncated protein is expressed. In concordance with this, the genomic context of the 5'-region of DSP and JUP presents an ATG in-frame with an optimal context for the reinitiation of translation. Thus, 5'-PTC triggers NMD in the PKP2, DSG2* and DSC2 genes, whereas it may escape NMD through the reinitiation of the translation in DSP and JUP genes, with no major effects on ACM-related gene expression.


Asunto(s)
Desmoplaquinas/genética , Desmoplaquinas/metabolismo , gamma Catenina/genética , gamma Catenina/metabolismo , Animales , Sistemas CRISPR-Cas , Línea Celular , Codón sin Sentido , Desmocolinas/genética , Desmogleína 2/genética , Mutación del Sistema de Lectura , Ratones , Degradación de ARNm Mediada por Codón sin Sentido , Placofilinas/genética , Biosíntesis de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA