Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(31): e2404728121, 2024 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042672

RESUMEN

How different classes of the B cell antigen receptor (BCR) sense viral antigens used in vaccination protocols is poorly understood. Here, we study antigen binding and sensing of human Ramos B cells expressing a BCR of either the IgM or IgG1 class with specificity for the CD4-binding-site of the envelope (Env) protein of the HIV-1. Both BCRs carry an identical antigen binding site derived from the broad neutralizing antibody (bnAb) CH31. We find a five times higher expression of the IgG1-BCR in comparison to the IgM-BCR on the surface of transfected Ramos B cells. The two BCR classes also differ from each other in their interaction with cognate HIV Env antigens in that the IgG1-BCR and IgM-BCR bind preferentially to polyvalent and monovalent antigens, respectively. By generating an IgM/IgG1 chimeric BCR, we found that the class-specific BCR expression and antigen-sensing behavior can be transferred with the CH1γ domain from the IgG1-BCR to the IgM-BCR. Thus, the class of CH1 domain has an impact on BCR assembly and expression as well as on antigen sensing.


Asunto(s)
VIH-1 , Inmunoglobulina G , Inmunoglobulina M , Receptores de Antígenos de Linfocitos B , Humanos , Inmunoglobulina M/inmunología , Inmunoglobulina G/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , VIH-1/inmunología , VIH-1/genética , Linfocitos B/inmunología , Linfocitos B/metabolismo , Anticuerpos Anti-VIH/inmunología , Dominios Proteicos , Anticuerpos Neutralizantes/inmunología
2.
Antiviral Res ; 229: 105953, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38960100

RESUMEN

Temsavir binds directly to the HIV-1 envelope glycoprotein gp120 and selectively inhibits interactions between HIV-1 and CD4 receptors. Previous studies identified gp120 amino acid positions where substitutions are associated with reduced susceptibility to temsavir. The mechanism by which temsavir susceptibility is altered in these envelope glycoproteins was evaluated. Pseudoviruses encoding gp120 substitutions alone (S375H/I/M/N, M426L, M434I, M475I) or in combination (S375H + M475I) were engineered on a wild-type JRFL background. Temsavir-gp120 and CD4-gp120 binding kinetics and ability of temsavir to block CD4-gp120 binding were evaluated using the purified polymorphic gp120 proteins and a Creoptix® WAVE Delta grating-coupled interferometry system. Fold-change in half-maximal inhibitory concentration (IC50) in JRFL-based pseudoviruses containing the aforementioned polymorphisms relative to that of wild-type ranged from 4-fold to 29,726-fold, while temsavir binding affinity for the polymorphic gp120 proteins varied from 0.7-fold to 73.7-fold relative to wild-type gp120. Strong correlations between temsavir IC50 and temsavir binding affinity (r = 0.7332; P = 0.0246) as well as temsavir binding on-rate (r = -0.8940; P = 0.0011) were observed. Binding affinity of gp120 proteins for CD4 varied between 0.4-fold and 3.1-fold compared with wild-type gp120; no correlations between temsavir IC50 and CD4 binding kinetic parameters were observed. For all polymorphic gp120 proteins, temsavir was able to fully block CD4 binding; 3 polymorphs required higher temsavir concentrations. Loss of susceptibility to temsavir observed for gp120 polymorphisms strongly correlated with reductions in temsavir binding on-rate. Nonetheless, temsavir retained the ability to fully block CD4-gp120 engagement given sufficiently high concentrations.


Asunto(s)
Fármacos Anti-VIH , Antígenos CD4 , Proteína gp120 de Envoltorio del VIH , VIH-1 , Unión Proteica , Proteína gp120 de Envoltorio del VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/química , VIH-1/efectos de los fármacos , VIH-1/genética , Humanos , Fármacos Anti-VIH/farmacología , Antígenos CD4/metabolismo , Antígenos CD4/genética , Sustitución de Aminoácidos , Polimorfismo Genético , Farmacorresistencia Viral , Concentración 50 Inhibidora , Cinética
3.
Neuropharmacology ; 245: 109818, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38142931

RESUMEN

Cardiac autonomic neuropathy resulting from human immunodeficiency virus (HIV) infection is common; however, its mechanism remains unknown. The current work attempted to explore the function and mechanism of the P2Y13 receptor in HIV-glycoprotein 120 (gp120)-induced neuropathy in cervical sympathetic ganglion. The superior cervical ganglion (SCG) of the male SD rat was coated with HIV-gp120 to establish a model of autonomic neuropathy. In each group, we measured heart rate, blood pressure, heart rate variability, sympathetic nerve discharge and cardiac function. The expression of P2Y13 mRNA and protein in the SCG was tested by real-time polymerase chain reaction and western blotting. Additionally, this study focused on identifying the protein levels of NOD-like receptor family pyrin domain-containing 3 (NLRP3), Caspase-1, Gasdermin D (GSDMD), interleukin (IL)-1ß and IL-18 in the SCG using western blotting and immunofluorescence. In gp120 rats, increased blood pressure, heart rate, cardiac sympathetic nerve activity, P2Y13 receptor levels and decreased cardiac function could be found. P2Y13 shRNA or MRS2211 inhibited the above mentioned changes induced by gp120, suggesting that the P2Y13 receptor may be engaged in gp120-induced sympathetic nerve injury. Moreover, the levels of NLRP3, Caspase-1, GSDMD, IL-1ß and IL-18 in the gp120 group were increased, while significantly decreased by P2Y13 shRNA or MRS2211. Therefore, the P2Y13 receptor is involved in gp120-induced sympathetic neuropathy, and its molecular mechanism shows an association with the activation of the NLRP3 inflammasome, followed by GSDMD formation along with the release of inflammatory factors including IL-1ß and IL-18. This article is part of the Special Issue on "Purinergic Signaling: 50 years".


Asunto(s)
Infecciones por VIH , VIH-1 , Enfermedades del Sistema Nervioso Periférico , Receptores Purinérgicos P2 , Animales , Masculino , Ratas , Proteínas Portadoras , Caspasas , Glicoproteínas/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/metabolismo , Inflamasomas/metabolismo , Interleucina-18/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades del Sistema Nervioso Periférico/virología , Ratas Sprague-Dawley , ARN Interferente Pequeño , Ganglio Cervical Superior/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , Receptores Purinérgicos P2/metabolismo
4.
Vaccines (Basel) ; 11(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37243081

RESUMEN

Vesicular stomatitis virus (VSV) remains an attractive platform for a potential HIV-1 vaccine but hurdles remain, such as selection of a highly immunogenic HIV-1 Envelope (Env) with a maximal surface expression on recombinant rVSV particles. An HIV-1 Env chimera with the transmembrane domain (TM) and cytoplasmic tail (CT) of SIVMac239 results in high expression on the approved Ebola vaccine, rVSV-ZEBOV, also harboring the Ebola Virus (EBOV) glycoprotein (GP). Codon-optimized (CO) Env chimeras derived from a subtype A primary isolate (A74) are capable of entering a CD4+/CCR5+ cell line, inhibited by HIV-1 neutralizing antibodies PGT121, VRC01, and the drug, Maraviroc. The immunization of mice with the rVSV-ZEBOV carrying the CO A74 Env chimeras results in anti-Env antibody levels as well as neutralizing antibodies 200-fold higher than with the NL4-3 Env-based construct. The novel, functional, and immunogenic chimeras of CO A74 Env with the SIV_Env-TMCT within the rVSV-ZEBOV vaccine are now being tested in non-human primates.

5.
Viruses ; 15(5)2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37243212

RESUMEN

Gene-modification therapies are at the forefront of HIV-1 cure strategies. Chimeric antigen receptor (CAR)-T cells pose a potential approach to target infected cells during antiretroviral therapy or following analytical treatment interruption (ATI). However, there are technical challenges in the quantification of HIV-1-infected and CAR-T cells in the setting of lentiviral CAR gene delivery and also in the identification of cells expressing target antigens. First, there is a lack of validated techniques to identify and characterize cells expressing the hypervariable HIV gp120 in both ART-suppressed and viremic individuals. Second, close sequence homology between lentiviral-based CAR-T gene modification vectors and conserved regions of HIV-1 creates quantification challenges of HIV-1 and lentiviral vector levels. Consideration needs to be taken into standardizing HIV-1 DNA/RNA assays in the setting of CAR-T cell and other lentiviral vector-based therapies to avoid these confounding interactions. Lastly, with the introduction of HIV-1 resistance genes in CAR-T cells, there is a need for assays with single-cell resolution to determine the competence of the gene inserts to prevent CAR-T cells from becoming infected in vivo. As novel therapies continue to arise in the HIV-1 cure field, resolving these challenges in CAR-T-cell therapy will be crucial.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Receptores Quiméricos de Antígenos , Humanos , Linfocitos T , VIH-1/genética , Receptores Quiméricos de Antígenos/genética , Infecciones por VIH/terapia , Inmunoterapia Adoptiva/métodos
6.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768230

RESUMEN

Ethanol (EtOH) exerts its effects through various protein targets, including transient receptor potential melastatin 7 (TRPM7) channels, which play an essential role in cellular homeostasis. We demonstrated that TRPM7 is expressed in rat brain microvascular endothelial cells (rBMVECs), the major cellular component of the blood-brain barrier (BBB). Heavy alcohol drinking is often associated with HIV infection, however mechanisms underlying alcohol-induced BBB damage and HIV proteins, are not fully understood. We utilized the HIV-1 transgenic (HIV-1Tg) rat to mimic HIV-1 patients on combination anti-retroviral therapy (cART) and demonstrated TRPM7 expression in rBMVECs wass lower in adolescent HIV-1Tg rats compared to control animals, however control and HIV-1Tg rats expressed similar levels at 9 weeks, indicating persistent presence of HIV-1 proteins delayed TRPM7 expression. Binge exposure to EtOH (binge EtOH) decreased TRPM7 expression in control rBMVECs in a concentration-dependent manner, and abolished TRPM7 expression in HIV-1Tg rats. In human BMVECs (hBMVECs), TRPM7 expression was downregulated after treatment with EtOH, HIV-1 proteins, and in combination. Next, we constructed in vitro BBB models using BMVECs and found TRPM7 antagonists enhanced EtOH-mediated BBB integrity changes. Our study demonstrated alcohol decreased TRPM7 expression, whereby TRPM7 could be involved in the mechanisms underlying BBB alcohol-induced damage in HIV-1 patients on cART.


Asunto(s)
Infecciones por VIH , Canales Catiónicos TRPM , Canales de Potencial de Receptor Transitorio , Ratas , Animales , Humanos , Adolescente , Barrera Hematoencefálica/metabolismo , Canales Catiónicos TRPM/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/metabolismo , Células Endoteliales/metabolismo , Etanol/toxicidad , Etanol/metabolismo , Ratas Transgénicas , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
7.
J Virol ; 96(24): e0127022, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36453881

RESUMEN

Broadly neutralizing antibodies (bNAbs) for HIV-1 prevention or cure strategies must inhibit transmitted/founder and reservoir viruses. Establishing sensitivity of circulating viruses to bNAbs and genetic patterns affecting neutralization variability may guide rational bNAbs selection for clinical development. We analyzed 326 single env genomes from nine individuals followed longitudinally following acute HIV-1 infection, with samples collected at ~1 week after the first detection of plasma viremia; 300 to 1,709 days postinfection but prior to initiating antiretroviral therapy (ART) (median = 724 days); and ~1 year post ART initiation. Sequences were assessed for phylogenetic relatedness, potential N- and O-linked glycosylation, and variable loop lengths (V1 to V5). A total of 43 env amplicons (median = 3 per patient per time point) were cloned into an expression vector and the TZM-bl assay was used to assess the neutralization profiles of 15 bNAbs targeting the CD4 binding site, V1/V2 region, V3 supersite, MPER, gp120/gp41 interface, and fusion peptide. At 1 µg/mL, the neutralization breadths were as follows: VRC07-LS and N6.LS (100%), VRC01 (86%), PGT151 (81%), 10-1074 and PGT121 (80%), and less than 70% for 10E8, 3BNC117, CAP256.VRC26, 4E10, PGDM1400, and N123-VRC34.01. Features associated with low sensitivity to V1/V2 and V3 bNAbs were higher potential glycosylation sites and/or relatively longer V1 and V4 domains, including known "signature" mutations. The study shows significant variability in the breadth and potency of bNAbs against circulating HIV-1 subtype C envelopes. VRC07-LS, N6.LS, VRC01, PGT151, 10-1074, and PGT121 display broad activity against subtype C variants, and major determinants of sensitivity to most bNAbs were within the V1/V4 domains. IMPORTANCE Broadly neutralizing antibodies (bNAbs) have potential clinical utility in HIV-1 prevention and cure strategies. However, bNAbs target diverse epitopes on the HIV-1 envelope and the virus may evolve to evade immune responses. It is therefore important to identify antibodies with broad activity in high prevalence settings, as well as the genetic patterns that may lead to neutralization escape. We investigated 15 bNAbs with diverse biophysical properties that target six epitopes of the HIV-1 Env glycoprotein for their ability to inhibit viruses that initiated infection, viruses circulating in plasma at chronic infection before antiretroviral treatment (ART), or viruses that were archived in the reservoir during ART in subtype C infected individuals in South Africa, a high burden country. We identify the antibodies most likely to be effective for clinical use in this setting and describe mutational patterns associated with neutralization escape from these antibodies.


Asunto(s)
Infecciones por VIH , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Humanos , Anticuerpos ampliamente neutralizantes/metabolismo , Epítopos/genética , Anticuerpos Anti-VIH/metabolismo , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/genética , Filogenia , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
8.
Nanotechnology ; 33(48)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-35882111

RESUMEN

Two-component self-assembling virus-like particles (VLPs) are promising scaffolds for achieving high-density display of HIV-1 envelope (gp140) trimers, which can improve the induction of neutralising antibodies (NAbs). In this study gp140 was displayed on the surface of VLPs formed by the AP205 phage coat protein. The CAP256 SU gp140 antigen was selected as the patient who this virus was isolated from developed broadly neutralising antibodies (bNAbs) shortly after superinfection with this virus. The CAP256 SU envelope is also sensitive to several bNAbs and has shown enhanced reactivity for certain bNAb precursors. A fusion protein comprising the HIV-1 CAP256 SU gp140 and the SpyTag (ST) (gp140-ST) was produced in HEK293 cells, and trimers were purified to homogeneity using gel filtration. SpyCatcher (SC)-AP205 VLPs were produced inEscherichia coliand purified by ultracentrifugation. The gp140-ST trimers and the SC-AP205 VLPs were mixed in varying molar ratios to generate VLPs displaying the glycoprotein (AP205-gp140-ST particles). Dynamic light scattering, negative stain electron microscopy and 2D classification indicated that gp140-ST was successfully bound to the VLPs, although not all potential binding sites were occupied. The immunogenicity of the coupled VLPs was evaluated in a pilot study in rabbits. One group was injected four times with coupled VLPs, and the second group was primed with DNA vaccines expressing Env and a mosaic Gag, followed by modified vaccinia Ankara expressing the same antigens. The animals were then boosted twice with coupled VLPs. Encouragingly, gp140-ST displayed on SC-AP205 VLPs was an effective boost to heterologously primed rabbits, leading to induction of autologous Tier 2 neutralising antibodies in 2/5 rabbits. However, four inoculations of coupled VLPs alone failed to elicit any Tier 2 antibodies. These results demonstrate that the native-like structure of HIV-1 envelope trimers and selection of a geometrically-suitable nanoparticle scaffold to achieve a high-density display of the trimers are important considerations that could improve the effect of nanoparticle-displayed gp140.


Asunto(s)
VIH-1 , Nanopartículas , Vacunas , Animales , Anticuerpos ampliamente neutralizantes , Células HEK293 , Humanos , Proyectos Piloto , Conejos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
9.
Retrovirology ; 19(1): 9, 2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35597982

RESUMEN

BACKGROUND: P-selectin glycoprotein ligand-1 (PSGL-1/CD162) has been studied extensively for its role in mediating leukocyte rolling through interactions with its cognate receptor, P-selectin. Recently, PSGL-1 was identified as a novel HIV-1 host restriction factor, particularly when expressed at high levels in the HIV envelope. Importantly, while the potent antiviral activity of PSGL-1 has been clearly demonstrated in various complementary model systems, the breadth of PSGL-1 incorporation across genetically diverse viral isolates and clinical isolates has yet to be described. Additionally, the biological activity of virion-incorporated PSGL-1 has also yet to be shown. RESULTS: Herein we assessed the levels of PSGL-1 on viruses produced through transfection with various amounts of PSGL-1 plasmid DNA (0-250 ng), compared to levels of PSGL-1 on viruses produced through infection of T cell lines and primary PBMC. We found that very low levels of PSGL-1 plasmid DNA (< 2.5 ng/well) were necessary to generate virus models that could closely mirror the phenotype of viruses produced via infection of T cells and PBMC. Unique to this study, we show that PSGL-1 is incorporated in a broad range of HIV-1 and SIV isolates and that virions with incorporated PSGL-1 are detectable in plasma from viremic HIV-1-infected individuals, corroborating the relevance of PSGL-1 in natural infection. Additionally, we show that PSGL-1 on viruses can bind its cognate selectin receptors, P-, E-, and L-selectins. Finally, we show viruses with endogenous levels of PSGL-1 can be captured by P-selectin and transferred to HIV-permissive bystander cells, highlighting a novel role for PSGL-1 in HIV-1 infection. Notably, viruses which contained high levels of PSGL-1 were noninfectious in our hands, in line with previous findings reporting the potent antiviral activity of PSGL-1. CONCLUSIONS: Our results indicate that levels of PSGL-1 incorporation into virions can vary widely among model systems tested, and that careful tailoring of plasmid levels is required to recapitulate physiological systems when using pseudovirus models. Taken together, our data suggest that PSGL-1 may play diverse roles in the physiology of HIV-1 infection, particularly due to the functionally active state of PSGL-1 on virion surfaces and the breadth of PSGL-1 incorporation among a wide range of viral isolates.


Asunto(s)
Infecciones por VIH , VIH-1 , Selectina-P , Antivirales/metabolismo , ADN/metabolismo , VIH-1/genética , VIH-1/metabolismo , Humanos , Leucocitos Mononucleares , Glicoproteínas de Membrana , Selectina-P/metabolismo
10.
Eur J Neurosci ; 56(2): 3806-3824, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35543645

RESUMEN

It is widely accepted that the surface glycoprotein (gp120) of human immunodeficiency virus-1 (HIV-1) plays an important role in HIV-1-induced nerve damage and pathogenesis of HIV-associated neurocognitive disorders (HAND). Our previous work has demonstrated that gp120 enhanced excitatory postsynaptic currents (EPSCs) mediated by N-methyl-d-aspartate receptors (NMDARs) and caused neural injury. However, the relationship between gp120, NMDARs and HAND is still unclear. Several lines of evidence indicate that double-stranded RNA-activated protein kinase (PKR) is involved in NMDA-induced cerebral ischaemia and retinal damage, but because its role in neuropathology is still debated, we examined whether PKR links oxidative stress and endoplasmic reticulum (ER) stress to exert a deleterious role in the rat model with gp120-induced dementia. In this study, we found that NMDAR antagonist memantine or PKR inhibitor C16 improved gp120-induced learning and memory impairment and inhibited gp120-induced PKR activity. Furthermore, memantine or C16 was found to attenuate gp120-induced neuroinflammation, oxidative stress, ER stress and its downstream IRE1α/JNK pathway. Additionally, memantine or C16 evidently inhibited apoptotic pathways by reducing the Bax and caspase-3, -8, -9 expressions and increasing Bcl-2 expression. So the NMDA receptor antagonists could alleviate HIV/gp120-induced dementia in the rat model by altering PKR level. In conclusion, this study demonstrates that NMDARs play a key role in HIV/gp120-induced hippocampal damage and cognitive dysfunction through PKR-mediated oxidative stress, ER stress, and IRE1α/JNK signalling pathway in rats, and implicating PKR inhibitors could provide a novel neuroprotective strategy for HAND via inhibiting ER stress and its downstream IRE1α signalling pathway.


Asunto(s)
Disfunción Cognitiva , Demencia , Proteína gp120 de Envoltorio del VIH , Neuroprotección , Receptores de N-Metil-D-Aspartato , Animales , Apoptosis , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Estrés del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Endorribonucleasas/farmacología , Proteína gp120 de Envoltorio del VIH/efectos adversos , Humanos , Memantina/farmacología , Estrés Oxidativo , Proteínas Serina-Treonina Quinasas , Ratas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Transducción de Señal
11.
mBio ; 13(1): e0275221, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35012342

RESUMEN

Infection of rhesus macaques with simian-human immunodeficiency viruses (SHIVs) is the preferred model system for vaccine development because SHIVs encode human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Envs)-a key target of HIV-1 neutralizing antibodies. Since the goal of vaccines is to prevent new infections, SHIVs encoding circulating HIV-1 Env are desired as challenge viruses. Development of such biologically relevant SHIVs has been challenging, as they fail to infect rhesus macaques, mainly because most circulating HIV-1 Envs do not use rhesus CD4 (rhCD4) receptor for viral entry. Most primary HIV-1 Envs exist in a closed conformation and occasionally transit to a downstream, open conformation through an obligate intermediate conformation. Here, we provide genetic evidence that open Env conformations can overcome the rhCD4 entry barrier and increase replication of SHIVs in rhesus lymphocytes. Consistent with prior studies, we found that circulating HIV-1 Envs do not use rhCD4 efficiently for viral entry. However, by using HIV-1 Envs with single amino acid substitutions that alter their conformational state, we found that transitions to intermediate and open Env conformations allow usage of physiological levels of rhCD4 for viral entry. We engineered these single amino acid substitutions in the transmitted/founder HIV-1BG505 Envs encoded by SHIV-BG505 and found that open Env conformation enhances SHIV replication in rhesus lymphocytes. Lastly, CD4-mediated SHIV pulldown, sensitivity to soluble CD4, and fusogenicity assays indicated that open Env conformation promotes efficient rhCD4 binding and viral-host membrane fusion. These findings identify the conformational state of HIV-1 Env as a major determinant for rhCD4 usage, viral fusion, and SHIV replication. IMPORTANCE Rhesus macaques are a critical animal model for preclinical testing of HIV-1 vaccine and prevention approaches. However, HIV-1 does not replicate in rhesus macaques, and thus, chimeric simian-human immunodeficiency viruses (SHIVs), which encode HIV-1 envelope glycoproteins (Envs), are used as surrogate challenge viruses to infect rhesus macaques for modeling HIV-1 infection. Development of SHIVs encoding Envs from clinically relevant, circulating HIV-1 variants has been extremely challenging, as such SHIVs replicate poorly, if at all, in rhesus lymphocytes. This is most probably because many circulating HIV-1 Envs do not use rhesus CD4 efficiently for viral entry. In this study, we identified conformational state of HIV-1 envelope as a key determinant for rhesus CD4 usage, viral-host membrane fusion, and SHIV replication in rhesus lymphocytes.


Asunto(s)
Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , VIH-1/genética , Macaca mulatta , Virus de la Inmunodeficiencia de los Simios/genética , Moléculas de Adhesión Celular , Replicación Viral/genética
12.
FEBS J ; 289(11): 3132-3147, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34921512

RESUMEN

The N-terminal segment of CCR5 contains four tyrosine residues, sulphation of two of which is essential for high-affinity binding to gp120. In the present study, the interactions of gp120YU2 with a 27-residue N-terminal CCR5 peptide sulphated at position Y10 and Y14, i.e. Nt-CCR5, were studied using 13 C-edited-HMQC methyl-NOESY [1 H(13 C)-1 H], combined with transferred NOE NMR spectroscopy. A large number of pairwise interactions were observed between the methyl protons of methionine, threonine, valine and isoleucine residues of gp120, and the aromatic tyrosine-protons of Nt-CCR5. M434, V120 and V200 of gp120 were found to interact with all four tyrosine residues, Y3, sY10, sY14 and Y15. Particularly intriguing was the observation that Y3 and Y15 interact with the same gp120 methyl protons. Such interactions cannot be explained by the single cryo-EM structure of gp120/CD4/CCR5 complex published recently (Nature, 565, 318-323, 2019). Rather, they are consistent with the existence of a dynamic equilibrium involving two or more binding modes of Nt-CCR5 to gp120. These different modes of binding can coexist because the surface of gp120 contains two sites that can optimally interact with a sulphated tyrosine residue and two sites that can interact favorably with a non-sulphated tyrosine residue. Modelling of gp120YU2 complexed with the Nt-CCR5 peptide or with the entire CCR5 receptor provides an explanation for the NMR observations and the existence of these different binding modes of the disordered N-terminus of CCR5. The data presented extend our understanding of the two-step model and suggest a more variable binding mode of Nt-CCR5 with gp120.


Asunto(s)
VIH-1 , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/metabolismo , Péptidos/química , Unión Proteica , Protones , Receptores CCR5/química , Tirosina/metabolismo
13.
Viruses ; 13(7)2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34372503

RESUMEN

A leading strategy for developing a prophylactic HIV-1 vaccine is the elicitation of antibodies that can neutralize a large fraction of circulating HIV-1 variants. However, a major challenge that has limited the effectiveness of current vaccine candidates is the extensive global diversity of the HIV-1 envelope protein (Env), the sole target for HIV-neutralizing antibodies. To address this challenge, various strategies incorporating Env diversity into the vaccine formulation have been proposed. Here, we assessed the potential of two such strategies that utilize a nanoparticle-based vaccine platform to elicit broadly neutralizing antibody responses. The nanoparticle immunogens developed here consisted of different formulations of Envs from strains BG505 (clade A) and CZA97 (clade C), attached to the N-termini of bacterial ferritin. Single-antigen nanoparticle cocktails, as well as mosaic nanoparticles bearing both Env trimers, elicited high antibody titers in mice and guinea pigs. Furthermore, serum from guinea pigs immunized with nanoparticle immunogens achieved autologous, and in some cases heterologous, tier 2 neutralization, although significant differences between mosaic and single-antigen nanoparticles were not observed. These results provide insights into the ability of different vaccine strategies for incorporating Env sequence diversity to elicit neutralizing antibodies, with implications for the development of broadly protective HIV-1 vaccines.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/sangre , Infecciones por VIH/prevención & control , VIH-1/inmunología , Nanopartículas/administración & dosificación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/administración & dosificación , Animales , Anticuerpos Neutralizantes/biosíntesis , Femenino , Cobayas , Infecciones por VIH/inmunología , VIH-1/clasificación , VIH-1/genética , Inmunización , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/clasificación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
14.
MAbs ; 13(1): 1946918, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34328065

RESUMEN

Passive transfer of broadly neutralizing antibodies is showing promise in the treatment and prevention of HIV-1. One class of antibodies, the VRC01 class, appears especially promising. To improve VRC01-class antibodies, we combined structure-based design with a matrix-based approach to generate VRC01-class variants that filled an interfacial cavity, used diverse third-complementarity-determining regions, reduced potential steric clashes, or exploited extended contacts to a neighboring protomer within the envelope trimer. On a 208-strain panel, variant VRC01.23LS neutralized 90% of the panel at a geometric mean IC80 less than 1 µg/ml, and in transgenic mice with human neonatal-Fc receptor, the serum half-life of VRC01.23LS was indistinguishable from that of the parent VRC01LS, which has a half-life of 71 d in humans. A cryo-electron microscopy structure of VRC01.23 Fab in complex with BG505 DS-SOSIP.664 Env trimer determined at 3.4-Å resolution confirmed the structural basis for its ~10-fold improved potency relative to VRC01. Another variant, VRC07-523-F54-LS.v3, neutralized 95% of the 208-isolated panel at a geometric mean IC80 of less than 1 µg/ml, with a half-life comparable to that of the parental VRC07-523LS. Our matrix-based structural approach thus enables the engineering of VRC01 variants for HIV-1 therapy and prevention with improved potency, breadth, and pharmacokinetics.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , Infecciones por VIH , VIH-1/inmunología , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Anti-VIH/genética , Anticuerpos Anti-VIH/inmunología , Anticuerpos Anti-VIH/farmacología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Humanos , Ratones Noqueados
15.
ChemMedChem ; 16(1): 105-107, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33428329

RESUMEN

Here we highlight a sound and unique work reported by Chen and co-workers entitled "HIV-1 fusion inhibitors targeting the membrane-proximal external region of Env spikes" (Xiao et al., Nat. Chem. Biol. 2020, 16, 529). In this article, the authors identify, by means of a clever antibody-guided strategy, several small molecules as fusion inhibitors of HIV-1 replication acting at the membrane proximal external region (MPER) of the HIV-1 envelope (Env) spike. MPER, which was previously recognized as a vaccine target, emerges as a novel druggable target for the discovery of HIV-1 fusion inhibitors. The compounds (exemplified by dequalinium and dequalinium-inspired analogues) prevent the conformational changes of Env from the prefusion species to the intermediate states required for membrane fusion. This work not only paves the way to novel, specific and useful anti-HIV-1 inhibitors, but also discloses new therapeutic strategies against other infectious diseases.


Asunto(s)
Inhibidores de Fusión de VIH/química , VIH-1/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Sitios de Unión , Decualinio/análogos & derivados , Decualinio/metabolismo , Decualinio/farmacología , Inhibidores de Fusión de VIH/metabolismo , Inhibidores de Fusión de VIH/farmacología , Humanos , Relación Estructura-Actividad , Internalización del Virus/efectos de los fármacos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
16.
Protein Sci ; 29(11): 2304-2310, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32926485

RESUMEN

The Dual-Acting Virolytic Entry Inhibitors, or DAVEI's, are a class of recombinant chimera fusion proteins consisting of a lectin, a flexible polypeptide linker, and a fragment of the membrane-proximal external region (MPER) of HIV-1 gp41. DAVEIs trigger virolysis of HIV-1 virions through interactions with the trimeric envelope glycoprotein complex (Env), though the details of these interactions are not fully determined as yet. The purpose of this work was to use structural modeling to rationalize a dependence of DAVEI potency on the molecular length of the linker connecting the two components. We used temperature accelerated molecular dynamics and on-the-fly parameterization to compute free energy versus end-to-end distance for two different linker lengths, DAVEI L0 (His6 ) and DAVEI L2 ([Gly4 Ser]2 His6 ). Additionally, an envelope model was created based on a cryo-electron microscopy-derived structure of a cleaved, soluble Env construct, with high-mannose glycans added which served as putative docking locations for the lectin, along with MPER added that served as a putative docking location for the MPER region of DAVEI (MPERDAVEI ). Using MD simulation, distances between the lectin C-terminus and Env gp41 MPER were measured. We determined that none of the glycans were close enough to gp41 MPER to allow DAVEI L0 to function, while one, N448, will allow DAVEI L2 to function. These findings are consistent with the previously determined dependence of lytic function on DAVEI linker lengths. This supports the hypothesis that DAVEI's engage Env at both glycans and the Env MPER in causing membrane poration and lysis.


Asunto(s)
Proteína gp41 de Envoltorio del VIH/química , VIH-1/química , Lectinas/química , Simulación de Dinámica Molecular , Proteínas Recombinantes de Fusión/química , Proteína gp41 de Envoltorio del VIH/genética , VIH-1/genética , Lectinas/genética , Proteínas Recombinantes de Fusión/genética , Relación Estructura-Actividad
17.
Virology ; 548: 73-81, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32838948

RESUMEN

The host protein SERINC5 inhibits the infectivity of HIV-1 virions in an Env-dependent manner and is counteracted by Nef. The conformation of the Env trimer reportedly correlates with sensitivity to SERINC5. Here, we tested the hypothesis that the "open" conformation of the Env trimer revealed by sensitivity to the V3-loop specific antibody 447-52D directly correlates with sensitivity to SERINC5. Of five Envs tested, SF162 was the most sensitive to neutralization by 447-52D, but it was not the most sensitive to SERINC5; instead the Env of LAI was substantially more sensitive to SERINC5 than all the other Envs. Mutational opening of the trimer by substitution of two tyrosines that mediate interaction between the V2 and V3 loops sensitized the Envs of JRFL and LAI to 447-52D as previously reported, but only BaL was sensitized to SERINC5. These data suggest that trimer "openness" is not sufficient for sensitivity to SERINC5.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Proteínas de la Membrana/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Anticuerpos Neutralizantes/inmunología , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/química , VIH-1/genética , VIH-1/fisiología , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
18.
Front Immunol ; 11: 1141, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582208

RESUMEN

Antibodies mediate a broad array of non-neutralizing Fc-mediated functions against HIV-1 including antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Accordingly, ADCC and ADCP induced by anti-HIV envelope gp120 IgG have been correlated to the limited success of the HIV-1 phase III vaccine trial RV144. It remains elusive whether ADCP can also be triggered by IgA, the isotype predominant at mucosal surfaces through which HIV-1 is mainly transmitted. Yet, we have previously shown that the HIV envelope subunit gp41-specific broadly neutralizing antibody 2F5 under the IgA isotype (2F5-IgA) triggers ADCC and cooperates with 2F5-IgG to increase HIV-1-infected cell lysis. Here, we now demonstrate that 2F5-IgA, more efficiently than 2F5-IgG, induces ADCP not only of gp41-coated beads but also of primary HIV-1-infected cells in a FcαRI-dependent manner. Both primary monocytes and neutrophils can act as effector cells of 2F5-IgA-mediated ADCP, although with different kinetics with faster neutrophil phagocytosis. However, unlike for ADCC, 2F5-IgA and 2F5-IgG do not cooperate to increase ADCP. Altogether, our results reveal that gp41-specific IgA mediate the efficient phagocytosis of HIV-1-infected cells. Inducing such ADCC and ADCP-prone IgA response by vaccination in addition to anti-HIV envelope IgG, might increase the protection against HIV acquisition at mucosal level.


Asunto(s)
Anticuerpos Anti-VIH/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Inmunoglobulina A/inmunología , Fagocitosis/inmunología , Anticuerpos Neutralizantes/inmunología , Células Cultivadas , Humanos
19.
Cell Rep ; 31(1): 107488, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268107

RESUMEN

Antibodies targeting the V1V2 apex of the HIV-1 envelope (Env) trimer comprise one of the most commonly elicited categories of broadly neutralizing antibodies. Structures of these antibodies indicate diverse modes of Env recognition typified by antibodies of the PG9 class and the PGT145 class. The mode of recognition, however, has been unclear for the most potent of the V1V2 apex-targeting antibodies, CAP256-VRC26.25 (named for donor-lineage.clone and referred to hereafter as VRC26.25). Here, we determine the cryoelectron microscopy structure at 3.7 Å resolution of the antigen-binding fragment of VRC26.25 in complex with the Env trimer thought to have initiated the lineage. The 36-residue protruding loop of VRC26.25 displays recognition incorporating both strand-C interactions similar to the PG9 class and V1V2 apex insertion similar to the PGT145 class. Structural elements of separate antibody classes can thus intermingle to form a "combined" class, which in this case yields an antibody of extraordinary potency.


Asunto(s)
Anticuerpos Anti-VIH/inmunología , Anticuerpos Anti-VIH/ultraestructura , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/inmunología , Línea Celular , Microscopía por Crioelectrón/métodos , Anticuerpos Anti-VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/metabolismo , Unión Proteica , Multimerización de Proteína
20.
Cell Rep ; 30(5): 1553-1569.e6, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32023469

RESUMEN

HIV-1-infected infants develop broadly neutralizing antibodies (bnAbs) more rapidly than adults, suggesting differences in the neonatal versus adult responses to the HIV-1 envelope (Env). Here, trimeric forms of HIV-1 Env immunogens elicit increased gp120- and gp41-specific antibodies more rapidly in neonatal macaques than adult macaques. Transcriptome analyses of neonatal versus adult immune cells after Env vaccination reveal that neonatal macaques have higher levels of the apoptosis regulator BCL2 in T cells and lower levels of the immunosuppressive interleukin-10 (IL-10) receptor alpha (IL10RA) mRNA transcripts in T cells, B cells, natural killer (NK) cells, and monocytes. In addition, immunized neonatal macaques exhibit increased frequencies of activated blood T follicular helper-like (Tfh) cells compared to adults. Thus, neonatal macaques have transcriptome signatures of decreased immunosuppression and apoptosis compared with adult macaques, providing an immune landscape conducive to early-life immunization prior to sexual debut.


Asunto(s)
VIH-1/inmunología , Inmunización , Transcripción Genética , Proteínas del Envoltorio Viral/inmunología , Vacunas contra el SIDA/inmunología , Animales , Animales Recién Nacidos , Anticuerpos Neutralizantes/sangre , Formación de Anticuerpos/inmunología , Heces/microbiología , Infecciones por VIH/sangre , Infecciones por VIH/inmunología , Activación de Linfocitos/inmunología , Subgrupos Linfocitarios/inmunología , Macaca mulatta , Microbiota , Monocitos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Transcriptoma/genética , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA