Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
Polymers (Basel) ; 16(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39065380

RESUMEN

The use of mineral reinforcements in polymer matrix composites has emerged as an alternative for sustainable production, reducing waste and enhancing the physical and mechanical properties of these materials. This study investigated the impact of the melt flow index (MFI) of HDPE and the particle size of two mineral reinforcements, Bahia Beige (BB) and Rio Grande do Norte Limestone (CRN), on the composites. All composites were processed via extrusion, followed by injection, with the addition of 30 wt.% reinforcement. Chemical analyses revealed similar compositions with high CaO content for both minerals, while X-ray diffraction (XRD) identified predominantly calcite, dolomite, and quartz phases. Variations in the MFI, reinforcement type, and particle size showed a minimal influence on composite properties, supported by robust statistical analyses that found no significant differences between groups. Morphological analysis indicated that composites with lower MFI exhibited less porous structures, whereas larger particles of BB and CRN formed clusters, affecting impact resistance, which was attributed to poor interfacial adhesion.

2.
Polymers (Basel) ; 16(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675071

RESUMEN

This study aimed to investigate the sustainable use of recycled plastics, specifically polypropylene (PP) and high-density polyethylene (HDPE), in the manufacture of geogrids for geotechnical and civil engineering applications. Plastics were collected from a recycling center, specifically targeting containers used for food, cleaning products, and other domestic packaging items. These plastics were sorted according to the Möbius triangle classification system, with HDPE (#2) and PP (#5) being the primary categories of interest. The research methodologically evaluates the mechanical properties of PP/HDPE (0/100, 25/75, 50/50, 75/25 and 100/0% w/w) composites through tensile and flexural tests, exploring various compositions and configurations of geogrids. The results highlight the superiority of pure recycled HDPE processed into 1.3 mm thick laminated yarns and hot air welded for 20 to 30 s, exhibiting a deformation exceeding 60% in comparison to the PP/HDPE composites. Through SolidWorks® Simulation, it was shown that the adoption of a trigonal geogrid geometry optimizes force distribution and tensile strength, significantly improving slope stabilization efficiency. Based on the results obtained, a laboratory-scale prototype geogrid was developed using an extrusion process. The results underscore the importance of careful composite design and yarn configuration selection to achieve the desired mechanical properties and performance in geogrid applications. It emphasizes the potential of recycled plastics as a viable and environmentally friendly solution for stabilizing slopes, contributing to the reduction in plastic waste and promoting sustainable construction practices.

3.
Polymers (Basel) ; 15(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37959929

RESUMEN

In recent decades, there has been an increasing focus on the alarming decline in global bee populations, given their critical ecological contributions to natural pollination and biodiversity. This decline, marked by a substantial reduction in bee colonies in forested areas, has serious implications for sustainable beekeeping practices and poses a broader risk to ecological well-being. Addressing these pressing issues requires innovative solutions, one of which involves the development and fabrication of beehives crafted from composite materials that are ecologically compatible with bee biology. Importantly, these materials should also exhibit a high resistance to environmental factors, such as ultraviolet (UV) radiation, in order to maintain their mechanical integrity and longevity. To investigate this, we conducted accelerated UV degradation tests on a variety of composite materials to rapidly assess their susceptibility to UV-induced changes. High-density polyethylene (HDPE) served as the matrix material and was reinforced with natural fibers, specifically fique fibers (Furcraea bedinghausii), banana fibers, and goose feathers. Our findings indicate that UV radiation exposure results in a noticeable reduction in the tensile strength of these materials. For example, wood composites experienced a 48% decline in tensile strength over a 60-day period, a rate of deterioration notably higher than that of other tested composite materials. Conversely, HDPE composites fortified with banana fibers initially demonstrated tensile strengths exceeding 9 MPa and 10 MPa. Although these values gradually decreased over the observation period, the composites still displayed favorable stress-strain characteristics. This research underscores the substantial influence of UV radiation on the longevity and efficacy of beehive materials, which in turn affects the durability of natural wood hives exposed to these environmental factors. The resultant increased maintenance and replacement costs for beekeepers further emphasize the need for judicious material selection in beehive construction and point to the viability of the composite materials examined in this study.

4.
Mar Pollut Bull ; 187: 114520, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36610302

RESUMEN

Microplastics (MPs) from the coastal areas of a highly anthropised estuary were sampled to assess their distribution in coastal sediments and their role as potential vectors of pollution. The average MP density was 1693 ± 2315 MPs/kg, which mainly accumulated in the high tide and storm berm areas of the beach. The Microplastic Pollution Index (MPPI), Microplastic Impact Coefficient (CMPI), Hierarchical Cluster Analysis and Principal Component Analysis revealed spatial variation in MPs pollution. High-density polyethylene plastic pellets were abundant at two beaches (192 ± 218 MPs/kg sediment). Furthermore, the presence of sorbed chemicals on pellets was assessed through GC-MS, showing 0.95 ± 0.09 ng/g of ∑7OCPs, 4.03 ± 0.89 ng/g of ∑7PCBs, 108.76 ± 12.88 ng/g of ∑16 PAHs and 122.79 ± 11.13 g/g of ∑29 PAHs. The sorption capacity of plastics, combined with their abundance, poses an environmental concern and also highlights their suitability as indicators of chemical exposure.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Microplásticos/análisis , Estuarios , Argentina , Brasil , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/análisis
5.
Environ Pollut ; 318: 120919, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563993

RESUMEN

Microplastics (MP) have received great attention due to the mass-produced residues discharged into the environment. MP are ideal for adhering to organic pollutants that can be easily dispersed, thus posing risks to human health. Furthermore, little has been reported on how different functional groups in polycyclic aromatic hydrocarbons (PAH) derivatives influence the adsorption behavior on MP. To better understand this process, groups methyl (-CH3) and hydroxyl (-OH) were selected and commercial and waste high-density polyethylene (HDPE, ≤ 1 mm) were used as adsorbents, and Naphthalene (Nap), 1-Methyl-Naphthalene (Me-Nap) and α-Naphthol as adsorbates. The results showed different behaviors for nonpolar and polar adsorbates. Dispersion forces were the main type of interaction between HDPE and Nap/Me-Nap, while dipole-induced dipole forces and H-bonding were the chief interactions involving MP and polar compounds. Regardless the HDPE source, Nap and Me-Nap have a Type III isotherm, and α-Naphthol presents a Type II isotherm. Nap and Me-Nap fitted to Freundlich isotherm of an unfavorable process (n = 2.12 and 1.11; 1.87 and 1.31, respectively), with positive values of ΔH° (50 and 77.17; 66 and 64.63 kJ mol-1) and ΔS° (0.070 and 0.0145; 0.122 and 0.103 kJ mol-1) for commercial and waste MP, respectively. Besides, the adsorption isotherm of α-Naphthol on commercial and waste HDPE fitted to the Langmuir model (Qmax = 42.5 and 27.2 µmol g-1, respectively), presenting negative values of ΔH° (-43.71 and -44.10 kJ mol-1) and ΔS° (-0.037 and -0.025 kJ mol-1). The adsorption kinetic study presents a nonlinear pseudo-second-order model for all cases. The K2 values follow the order Me-Nap > Nap > α-Naphthol in both MP. Therefore, this experimental study provides new insights into the affinity of PAH derivatives for a specific class of MP, helping to understand the environmental fate of residual MP and organic pollutants.


Asunto(s)
Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Humanos , Microplásticos/química , Plásticos , Polietileno , Adsorción , Contaminantes Químicos del Agua/análisis , Naftalenos/química , Termodinámica , Hidrocarburos Policíclicos Aromáticos/análisis , Cinética , Concentración de Iones de Hidrógeno
6.
Materials (Basel) ; 15(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36363010

RESUMEN

In this study, an antimicrobial packaging material was successfully developed with blends of high-density polyethylene (HDPE) and chitosan (CS) made by melt processing. In the different HDPE/CS composites, the CS content effect (up to 40%), and the addition of quaternary ammonium salt functionalized chitosan (CS-CTAB) as an additive were evaluated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analyses (TG), tensile strength, scanning electron microscopy (SEM) and antimicrobial activity. When analyzing the effect of the additive in the different HDPE/CS composites, it was observed that the compositions with 10 and 20 %wt of chitosan showed better elongation values (~13% and 10%) as well as a higher decomposition temperature at 20% mass loss (T20) varying from (321-332 °C and 302-312 °C), respectively, in relation to the other compositions, regardless of the type of additive used, it acted as an antimicrobial agent, promoting inhibition of microbial growth against the strains gram-positive and gram-negative used in this work, making the different HDPE/CS composites suitable candidates for use in food packaging.

7.
Polymers (Basel) ; 14(6)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35335475

RESUMEN

In this work, recycled poly(ethylene terephthalate) (PETR) was blended with virgin high-density polyethylene (HDPE) in an internal mixer in an attempt to obtain a material with improved properties. A compatibilizer (PE-g-MA) and a chain extender (Joncryl) were added to the PETR/HDPE blend and the rheological and thermal properties of the modified and unmodified blends as well as those of virgin PET with virgin HDPE (PETV/HDPE). All the blends were characterized by torque rheometry, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The data obtained indicate that the incorporation of either the chain extender or the compatibilizer agent led to increases in torque (and hence in viscosity) of the blend compared to that of the neat polymers. The joint incorporation of the chain extender and compatibilizer further increased the viscosity of the systems. Their effect on the crystallinity parameters of HDPE was minimal, but they reduced the crystallinity and crystallization temperature of virgin and recycled PET in the blends. The thermal stability of the PETR/HDPE blend was similar to that of the PETV/HDPE blend, and it was not affected by the incorporation of the chain extender and/or compatibilizer.

8.
Polymers (Basel) ; 13(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805116

RESUMEN

Microplastics (MPs) are distributed in a wide range of aquatic and terrestrial ecosystems throughout the planet. They are known to adsorb hazardous substances and can transfer them across the trophic web. To eliminate MPs pollution in an environmentally friendly process, we propose using a photocatalytic process that can easily be implemented in wastewater treatment plants (WWTPs). As photocatalysis involves the formation of reactive species such as holes (h+), electrons (e-), hydroxyl (OH●), and superoxide ion (O2●-) radicals, it is imperative to determine the role of those species in the degradation process to design an effective photocatalytic system. However, for MPs, this information is limited in the literature. Therefore, we present such reactive species' role in the degradation of high-density polyethylene (HDPE) MPs using C,N-TiO2. Tert-butanol, isopropyl alcohol (IPA), Tiron, and Cu(NO3)2 were confirmed as adequate OH●, h+, O2●- and e- scavengers. These results revealed for the first time that the formation of free OH● through the pathways involving the photogenerated e- plays an essential role in the MPs' degradation. Furthermore, the degradation behaviors observed when h+ and O2●- were removed from the reaction system suggest that these species can also perform the initiating step of degradation.

9.
Fuel (Lond) ; 284: 119024, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32863405

RESUMEN

Waste cooking oil (WCO) is a valuable feedstock for the synthesis of biodiesel but the product exhibits poor oxidative stability. Techniques available for assessing this parameter are generally expensive and time-consuming, hence the purpose of this study was to develop and validate a rapid and reliable predictive system based on signals from the sensors of a commercial hand-held e-nose instrument. Biodiesels were synthesized from soybean oil and six samples of WCO, and their physicochemical characteristics and oxidative stabilities determined before and after storage in different types of containers for 30 or 60 days at room temperature or 43 °C. Linear regression models were constructed based on principal component analysis of the signals generated by all 32 e-nose sensors and stochastic modeling of signal profiles from individual sensors. The regression model with principal components as predictors was unable to explain the oxidative stability of biodiesels, while the regression model with stochastic parameters (combining signals from 11 sensors) as predictors showed an excellent goodness of fit (R2 = 0.91) with a 45-sample training set and a good quality of prediction (R2 = 0.84) with a 18-sample validation set. The proposed e-nose system was shown to be accurate and efficient and could be used to advantage by producers/distributors of biodiesel in the assessment fuel quality.

10.
Polymers (Basel) ; 12(10)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096594

RESUMEN

In this work, the plasma was used in the dielectric barrier discharge (DBD) technique for modifying the high-density polyethylene (HDPE) surface. The treatments were performed via argon or oxygen, for 10 min, at a frequency of 820 Hz, voltage of 20 kV, 2 mm distance between electrodes, and atmospheric pressure. The efficiency of the plasma was determined through the triple Langmuir probe to check if it had enough energy to promote chemical changes on the material surface. Physicochemical changes were diagnosed through surface characterization techniques such as contact angle, attenuated total reflection to Fourier transform infrared spectroscopy (ATR-FTIR), X-ray excited photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Plasma electronics temperature showed that it has enough energy to break or form chemical bonds on the material surface, impacting its wettability directly. The wettability test was performed before and after treatment through the sessile drop, using distilled water, glycerin, and dimethylformamide, to the profile of surface tensions by the Fowkes method, analyzing the contact angle variation. ATR-FTIR and XPS analyses showed that groups and bonds were altered or generated on the surface when compared with the untreated sample. The AFM showed a change in roughness, and this directly affected the increase of wettability.

11.
Polymers (Basel) ; 11(10)2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557864

RESUMEN

In this work, composites of high density polyethylene (HDPE) with chitosan were prepared by melt compounding in a laboratory internal mixer. Maleic anhydride grafted HDPE (PE-g-MA) in a concentration up to 25 phr was used as a compatibilizer to enhance the dispersing effect of chitosan in the HDPE matrix. The degree of crystallinity was investigated by X-ray diffraction (XRD) and the thermal properties were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG). The morphology was investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The integrity of composites was evaluated by mechanical properties and antibacterial properties were assessed against Escherichia coli (DH5a). Neither crystallinity nor HDPE's melting parameters changed upon addition of chitosan and PE-g-MA. Chitosan aggregates were observed, which were dispersed upon addition of PE-g-MA, which also provided improved mechanical performance. Chitosan significantly improved the bacteriostatic effect of HDPE compounds preventing bacteria to colonize thus reducing the number of viable colony-forming units (CFU). This study revealed that HDPE/chitosan composites could be obtained by melt compounding, at lower cost and additionally having antibacterial properties, which might provide a new formulation option for developing antimicrobial film for food packaging.

12.
Materials (Basel) ; 11(2)2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29438286

RESUMEN

In this study, blends based on a high density polyethylene (HDPE) and chitosan (CS) were successfully prepared by melt processing, in a laboratory internal mixer. The CS biopolymer content effect (up to maximum of 40%), and, the addition of bentonite clay modified with quaternary ammonium salt (CTAB) impregnated chitosan as a compatibilizing agent, on the properties of the blends was analyzed by Fourier transform-infrared spectroscopy (FT-IR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analyses (TG), tensile strength, and scanning electron microscopy (SEM). The use of clay modified with CTAB impregnated chitosan, employing a method developed here, improved the compatibility of HDPE with chitosan, and therefore the thermal and some of the mechanical properties were enhanced, making HDPE/chitosan blends suitable candidates for food packaging. It was possible to obtain products of synthetic polymer, HDPE, with natural polymer, chitosan, using a method very used industrially, with acceptable and more friendly properties to the environment, when compared to conventional synthetic polymers. In addition, due to the possibility of impregnated chitosan with quaternary ammonium salt exhibit higher antibacterial activity than neat chitosan, the HDPE/chitosan/organobentonite blends may be potentially applied in food containers to favor the preservation of food for a longer time in comparison to conventional materials.

13.
Eng. sanit. ambient ; Eng. sanit. ambient;21(3): 561-568, jul.-set. 2016. tab, graf
Artículo en Portugués | LILACS | ID: lil-794654

RESUMEN

RESUMO: Este trabalho aborda a questão do gerenciamento de embalagens pós-consumo de lubrificantes automotivos, considerando as dificuldades inerentes à implementação do sistema de logística reversa - prática compulsória por força de lei (Brasil, Lei 12.305/2010) - e a ineficácia dos atuais métodos utilizados para remoção da fração oleosa residual, necessária ao reprocessamento do material plástico por reciclagem mecânica direta. Para determinar metodologia apropriada para limpeza dos frascos de lubrificantes foram conduzidos experimentos para avaliar a influência do aquecimento e da posição das embalagens durante o processo de drenagem gravitacional. O procedimento analítico realizado proporcionou a escolha de uma combinação de variáveis capaz de assegurar remoção de elevado teor do resíduo oleoso com menor gasto energético. A otimização foi feita utilizando um planejamento experimental do tipo composto central com triplicata no ponto central. Os dados obtidos nos ensaios foram analisados com recursos estatísticos e demonstraram que ambos os parâmetros avaliados interferem, de forma significativa, no processo em estudo. Os resultados apontaram aumento da eficácia do processo quando a drenagem é realizada em temperaturas superiores a 35ºC e com a embalagem inclinada em ângulos próximos a 70º em relação à horizontal. Nessas condições, percentuais de remoção de óleo residual superaram 95% após 35 minutos de drenagem.


ABSTRACT: This work addresses the management of automotive lubricants packages after lubricant use, considering the difficulties of implementing reverse logistics system - compulsory practice by virtue of Law (Brazil, Law 12,305/2010) - and the poor effectiveness of the current methods for removing residual oil from packages, which is required before reprocessing plastic material in direct mechanical recycling. Experiments were conducted in order to determine the appropriate methodology for cleaning the lubricant bottles, evaluating the influence of temperature and package position in the gravitational drainage. This analytical procedure elicited a combination of variables and conditions capable of improving the removal of oily residue with less energy. The experimental optimization was performed using a central composite model with triplicate center point. The test results were statistically analyzed and showed that both parameters have significant influence on the separation process. The data indicated that the process is more effective when the drainage is performed above 35ºC and the packaging inclined at angles close to 70º relative to horizontal. Under these conditions, the oil removal is greater than 95% after 35 minutes of drainage.

14.
Mater Sci Eng C Mater Biol Appl ; 39: 403-10, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24863241

RESUMEN

This study demonstrates the potential application of glass particles doped with Zn(+2) (GZn) as an atoxic, antimicrobial additive when used in conjunction with high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) polymers. Toxicity tests demonstrated that these modified glass particles were nontoxic to human cells, and atomic absorption analyses demonstrated the migration of ionic species in quantities less than 2.0ppm for both the HDPE/GZn and LLDPE/GZn compounds. Microbiological tests demonstrated the antimicrobial effect of the pure GZn compound as well as the polymeric HDPE/GZn and LLDPE/GZn compounds. In addition, at percentages of GZn higher than 2.00wt.% and at a time of 4h, the bactericidal performance is excellent and equal for both polymeric compounds.


Asunto(s)
Antiinfecciosos/química , Vidrio/química , Polietileno/química , Polímeros/química , Zinc/química , Antiinfecciosos/farmacología , Células Sanguíneas/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Polietileno/farmacología , Polímeros/farmacología , Pruebas de Toxicidad , Zinc/farmacología
15.
Waste Manag ; 33(12): 2771-80, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24011434

RESUMEN

Solid waste, including municipal waste and its management, is a major challenge for most cities and among the key contributors to climate change. Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solid waste stream. In São Paulo, Brazil, recycling cooperatives play a crucial role in providing recycling services including collection, separation, cleaning, stocking, and sale of recyclable resources. The present research attempts to measure the greenhouse gas emission reductions achieved by the recycling cooperative Cooperpires, as well as highlight its socioeconomic benefits. Methods include participant observation, structured interviews, questionnaire application, and greenhouse gas accounting of recycling using a Clean Development Mechanism methodology. The results show that recycling cooperatives can achieve important energy savings and reductions in greenhouse gas emissions, and suggest there is an opportunity for Cooperpires and other similar recycling groups to participate in the carbon credit market. Based on these findings, the authors created a simple greenhouse gas accounting calculator for recyclers to estimate their emissions reductions.


Asunto(s)
Efecto Invernadero/prevención & control , Reciclaje/estadística & datos numéricos , Algoritmos , Brasil , Conservación de los Recursos Energéticos , Administración de Residuos
16.
Eng. sanit. ambient ; Eng. sanit. ambient;14(2): 235-244, abr.-jun. 2009. ilus, tab
Artículo en Portugués | LILACS | ID: lil-520308

RESUMEN

A discussão acerca da viabilidade técnica, econômica e ambiental do reúso da água em processos industriais tem sido uma preocupação constante. Neste trabalho propõe-se uma alternativa simplificada para o tratamento de efluentes com vistas ao seu reúso em uma indústria de reciclagem de plásticos. A água, no presente caso, é componente fundamental para o processo, já que participa como elemento de remoção de detritos e impurezas que contaminam a matriz da matéria-prima utilizada, proveniente, principalmente, de aterros sanitários e lixões. As embalagens plásticas recicladas pela indústria em questão são, em sua grande maioria, de uso doméstico e, em menor escala, frascos contaminados com óleos lubrificantes. Os resultados demonstraram a viabilidade do tratamento através de processo físico-químico por coagulação, floculação, decantação e filtração em manta geotêxtil, com o uso do hidroxicloreto de alumínio (PAC) como coagulante, soda cáustica (50 por cento) como alcalinizante e polieletrólito como auxiliar de floculação e desidratação do lodo, bem como a exequibilidade do reúso dos efluentes em circuito fechado.


The discussion about technical, economical and environmental feasibility of water reuse in industrial process has been a constant concern. This paper purposes a simplified choice for waste water treatment seeking reuse in a plastic recycle industry. The water, in this case, is a prime component because it is the main element for the debris and impurities removal that contaminates the matrix of plastic raw material, which comes, mostly, from landfill and waste disposals. The recycled plastic packages, from the company that had been used for this research, come mostly from domestic use and, in a minor scale, the plastic package contaminated by lubricant oil. The final results show feasible for the treatment through physical-chemical process by coagulation, flocculation, decantation and filtration on geotextile, with the use of aluminum hidroxichloride (PAC) as coagulant, sodium hydroxide as alkaliner, polyelectrolyte as auxiliary on flocculation and slush dehydration, as well as the workability of the effluents reuse under a closed circuit proved itself the technical, economical and environmental feasibility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA