RESUMEN
Metabolic alterations are increasingly recognized as important aspects of colorectal cancer (CRC), offering potential avenues for identifying therapeutic targets. Previous studies have demonstrated the cytotoxic potential of bamboo leaf extract obtained from Guadua incana (BLEGI) against HCT-116 colon cancer cells. However, the altered metabolic pathways in these tumor cells remain unknown. Therefore, this study aimed to employ an untargeted metabolomic approach to reveal the metabolic alterations of the endometabolome and exometabolome of HCT-116 cells upon exposure to BLEGI treatment. First, a chemical characterization of the BLEGI was conducted through liquid chromatography coupled with mass spectrometry (LC-MS). Next, we assessed cell viability via MTT and morphological analysis using an immunofluorescence assay against colon cancer cells, and anti-inflammatory activity using an LPS-stimulated macrophage model. Subsequently, we employed LC-MS and proton nuclear magnetic resonance (1H-NMR) to investigate intra- and extracellular changes. Chemical characterization primarily revealed the presence of compounds with a flavone glycoside scaffold. Immunofluorescence analysis showed condensed chromatin and subsequent formation of apoptotic bodies, suggesting cell death by apoptosis. The results of the metabolomic analysis showed 98 differential metabolites, involved in glutathione, tricarboxylic acid cycle, and lipoic acid metabolism, among others. Additionally, BLEGI demonstrated significant nitric oxide (NO) inhibitory capacity in macrophage cells. This study enhances our understanding of BLEGI's possible mechanism of action and provides fresh insights into therapeutic targets for treating this disease.
Asunto(s)
Neoplasias del Colon , Extractos Vegetales , Hojas de la Planta , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Células HCT116 , Metabolómica/métodos , Metaboloma/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Animales , Células RAW 264.7 , Ratones , Cromatografía LiquidaRESUMEN
Peanut skin is a rich source of bioactive compounds which may be able to reduce the risk factors associated with metabolic syndromes. This study aimed to characterize bio-compounds from peanut skin (Arachis hypogaea) and their bioactivity (antioxidant activity, inhibition of lipase, and carbohydrase enzymes) and to evaluate their anti-proliferative properties in colorectal cancer cells (HCT116) upon in vitro digestion. Peanut skin was digested in two sequential phases, and the final content, named phase-1 (P1) and phase-2 (P2) extracts, was evaluated. Several bioactive compounds were positively identified and quantified by liquid chromatography, including quinic acid, released especially after in vitro digestion. The total phenolic content and, regardless of the method, the antioxidant activity of P1 was higher than P2. P1 also showed a lower enzyme inhibitory concentration IC50 than P2, lipase, and α-glucosidase. For cell viability in HCT116 cells, lower concentrations of P1 were found for IC50 compared to P2. In conclusion, bioactive compounds were released mainly during the first phase of the in vitro digestion. The digested samples presented antioxidant activity, enzyme inhibitory activity, and cancer cell cytotoxicity, especially those from the P1 extract. The potential applications of such a by-product in human health are reported.
RESUMEN
Diphenyl ditelluride (DPDT) is an organotellurium (OT) compound with pharmacological properties, including antioxidant, antigenotoxic and antimutagenic activities when applied at low concentrations. However, DPDT as well as other OT compounds also show cytotoxicity against mammalian cells when treatments occur at higher drug concentrations. Considering that the underlying mechanisms of toxicity of DPDT against tumor cells have been poorly explored, the objective of our study was to investigate the effects of DPDT against both human cancer and non-tumorigenic cells. As a model, we used the colonic HCT116 cancer cells and the MRC5 fibroblasts. Our results showed that DPDT preferentially targets HCT116 cancer cells when compared to MRC5 cells with IC50 values of 2.4 and 10.1 µM, respectively. This effect was accompanied by the induction of apoptosis and a pronounced G2/M cell cycle arrest in HCT116 cells. Furthermore, DPDT induces DNA strand breaks at concentrations below 5 µM in HCT116 cells and promotes the occurrence of DNA double strand breaks mostly during S-phase as measured by γ-H2AX/EdU double staining. Finally, DPDT forms covalent complexes with DNA topoisomerase I, as observed by the TARDIS assay, with a more prominent effect observed in HCT116 than in MRC5 cells. Taken together, our results show that DPDT preferentially targets HCT116 colon cancer cells likely through DNA topoisomerase I poisoning. This makes DPDT an interesting molecule for further development as an anti-proliferative compound in the context of cancer.
Asunto(s)
Neoplasias del Colon , ADN-Topoisomerasas de Tipo I , Animales , Humanos , Células HCT116 , ADN-Topoisomerasas de Tipo I/metabolismo , Apoptosis , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , ADN , Mamíferos/metabolismoRESUMEN
Abstract The purpose of this work was to investigate the effects of curcumin on the biological behavior of colorectal cancer cells through the JAK/STAT3 and RAS/MAPK/NF-κB pathways. Human colorectal cancer HCT116 cells were cultured and divided into a control group and low, medium and high-dose curcumin groups (n =5). HCT116 colorectal cancer cells became long-growing cells after incubation and culture at 37°C. The control group was treated with 15μL phosphate-buffered saline, and the low-dose, medium-dose and high-dose curcumin groups were treated with 20, 40 and 80μmol/L curcumin, respectively. All groups were treated with relevant drug intervention, digested and centrifuged for 48h, washed twice with a PBS solution, centrifuged at 1000 rpm for 3 min, and the cells precipitated. The proliferation, apoptosis and growth cycle of cells in each group were observed, and the expressions of the JAK/STAT3 and RAS/MAPK/NF-κB pathways and related proteins in each group were studied. Compared with the curcumin low-dose and medium-dose groups, the proliferation ability of the curcumin high-dose group was significantly decreased (P<0.05). When the low-dose and medium-dose curcumin groups were compared with the high-dose curcumin group, the apoptosis ability was significantly increased (P<0.05). When the low-dose and medium-dose curcumin groups were compared, the growth ratio of the G0/G1 phase in the high-dose curcumin group was significantly increased, and the percentage of the S phase was significantly decreased (P<0.05). Compared with the curcumin low-dose and medium-dose groups, the expression of JAK-STAT3 and RAS/MAPK/NF-κB pathway in the curcumin high-dose group was significantly decreased (P<0.05). The protein expressions of STAT3, RAS, P-P38 and P65 in the curcumin high-dose group were significantly lower than those in the curcumin low-dose and medium-dose groups (P<0.05). Curcumin can inhibit the expression of JAK/STAT3 and RAS/MAPK/NF-κB pathways, block the growth cycle, and inhibit the proliferation and induce apoptosis of colorectal cancer cells, providing a new idea for the clinical treatment of colorectal cancer.
Resumen El objetivo del presente trabajo fue investigar los efectos de la curcumina en el comportamiento biológico de las células del cáncer colorrectal mediante el estudio de las vías JAK/STAT3 y RAS/MAPK/NF-KB. Las células del cáncer colorrectal humano HCT116 se cultivaron y dividieron en un grupo control y en grupos con dosis baja, media y alta (n = 5) de curcumina. Las células de cáncer colorrectal HCT116 se convirtieron en células de crecimiento prolongado después de la incubación y cultivo a 37°C. El grupo de control se trató con 15 μL de solución tampón fosfato salina (PBS) y los grupos de curcumina de dosis baja, media y alta se trataron con 20, 40 y 80 μmol/L de curcumina, respectivamente. Todos los grupos fueron tratados con la intervención farmacológica pertinente, digeridos y centrifugados durante 48 horas, lavados dos veces con solución de PBS, centrifugados a 1000 rpm durante 3 minutos, y las células precipitadas. Se observaron la proliferación, la apoptosis y el ciclo de crecimiento de las células de cada grupo, y fueron estudiados las expresiones de las vías JAK/STAT3, RAS/MAPK/NF-KB y proteínas relacionadas en cada grupo. Comparado con los grupos de la dosis baja y media de la curcumina, disminuyó obviamente la capacidad de proliferación del grupo de la dosis alta de la curcumina (P<0,05). Comparado con los grupos de la dosis baja y media de la curcumina, aumentó de modo significativo la capacidad de la apoptosis del grupo de la dosis alta de la curcumina (P<0,05). Comparado con los grupos de la curcumina de dosis baja y media, aumentó obviamente la proporción del crecimiento de la fase G0/G1 en el grupo de la curcumina de dosis alta y el porcentaje de la fase S disminuyó considerablemente (P<0,05). Las expresiones proteicas STAT3, RAS, P-P38 y P65 en el grupo de la dosis alta de la curcumina fueron evidentemente más bajas que las de los grupos de la dosis baja y media de la curcumina (P<0.05). La curcumina puede inhibir la expresión de las vías JAK/STAT3 y RAS/MAPK/NF-KB, bloquear el ciclo del crecimiento y luego inhibir la proliferación e inducir apoptosis de las células del cáncer colorrectal, lo que brinda una nueva idea para el tratamiento clínico del cáncer colorrectal.
RESUMEN
Colorectal cancer (CRC) is among the top three most deadly cancers worldwide. The survival rate for this disease has not been reduced despite the treatments, the reason why the search for therapeutic alternatives continues to be a priority issue in oncology. In this research work, we tested our successful pharmacological combination of three drugs, metformin, doxorubicin, and sodium oxamate (triple therapy, or TT), as an autophagy inducer. Firstly, we employed western blot (WB) assays, where we observed that after 8 h of stimulation with TT, the proteins Unc-51 like autophagy activating kinase 1(ULK1), becline-1, autophagy related 1 protein (Atg4), and LC3 increased in the CRC cell lines HCT116 and SW480 in contrast to monotherapy with doxorubicin. The overexpression of these proteins indicated the beginning of autophagy flow through the activation of ULK1 and the hyperlipidation of LC3 at the beginning of this process. Moreover, we confirm that ULK1 is a bona fide target of hsa-miR-106a-5p (referred to from here on as miR-106a) in HCT116. We also observed through the GFP-LC3 fusion protein that in the presence of miR-106a, the accumulation of autophagy vesicles in cells stimulated with TT is inhibited. These results show that the TT triggered autophagy to modulate miR-106a/ULK1 expression, probably affecting different cellular pathways involved in cellular proliferation, survivance, metabolic maintenance, and cell death. Therefore, considering the importance of autophagy in cancer biology, the study of miRNAs that regulate autophagy in cancer will allow a better understanding of malignant tumors and lead to the development of new disease markers and therapeutic strategies.
Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Neoplasias Colorrectales/tratamiento farmacológico , Doxorrubicina/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , MicroARNs/genética , Autofagia/efectos de los fármacos , Proteínas Relacionadas con la Autofagia/efectos de los fármacos , Beclina-1/genética , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Combinación de Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Humanos , Metformina/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genéticaRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Virola surinamensis (Rol. ex Rottb.) Warb. (Myristicaceae), popularly known in Brazil as "mucuíba", "ucuúba", "ucuúba-branca" or "ucuúba do igapó", is a medicinal plant used to treat a variety of diseases, including infections, inflammatory processes and cancer. AIM OF THE STUDY: In the present work, we investigated the chemical constituents and the in vitro and in vivo inhibition of human colon carcinoma HCT116 cells by essential oils obtained from the bark (EOB) and leaves (EOL) of V. surinamensis. MATERIALS AND METHODS: EOB and EOL were obtained by hydrodistillation and analyzed via gas chromatography with flame ionization detection and gas chromatography coupled to mass spectrometry. In vitro cytotoxic activity was determined in cultured cancer cells HCT116, HepG2, HL-60, B16-F10 and MCF-7 and in a non-cancerous cell line MRC-5 by the Alamar blue assay after 72 h of treatment. Annexin V/propidium iodide staining, mitochondrial transmembrane potential and cell cycle distribution were evaluated by flow cytometry in HCT116 cells treated with essential oils after 24 and 48 h of treatment. The cells were also stained with May-Grunwald-Giemsa to analyze cell morphology. In vivo antitumor activity was evaluated in C.B-17 SCID mice with HCT116 cells. RESULTS: The main constituents in EOB were aristolene (28.0 ± 3.1%), α-gurjunene (15.1 ± 2.4%), valencene (14.1 ± 1.9%), germacrene D (7.5 ± 0.9%), δ-guaiene (6.8 ± 1.0%) and ß-elemene (5.4 ± 0.6%). On the other hand, EOL displayed α-farnesene (14.5 ± 1.5%), ß-elemene (9.6 ± 2.3%), bicyclogermacrene (8.1 ± 2.0%), germacrene D (7.4 ± 0.7%) and α-cubebene (5.6 ± 1.1%) as main constituents. EOB showed IC50 values for cancer cells ranging from 9.41 to 29.52 µg/mL for HCT116 and B16-F10, while EOL showed IC50 values for cancer cells ranging from 7.07 to 26.70 µg/mL for HepG2 and HCT116, respectively. The IC50 value for a non-cancerous MRC-5 cell was 34.7 and 38.93 µg/mL for EOB and EOL, respectively. Both oils induced apoptotic-like cell death in HCT116 cells, as observed by the morphological characteristics of apoptosis, externalization of phosphatidylserine, mitochondrial depolarization and fragmentation of internucleosomal DNA. At a dose of 40 mg/kg, tumor mass inhibition rates were 57.9 and 44.8% in animals treated with EOB and EOL, respectively. CONCLUSIONS: These data indicate V. surinamensis as possible herbal medicine in the treatment of colon cancer.
Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Myristicaceae , Aceites Volátiles/farmacología , Corteza de la Planta , Hojas de la Planta , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Células HCT116 , Células HL-60 , Células Hep G2 , Humanos , Células MCF-7 , Melanoma Experimental , Ratones , Ratones SCID , Aceites Volátiles/aislamiento & purificación , Ensayos Antitumor por Modelo de Xenoinjerto/métodosRESUMEN
Quinoxaline derivatives are reported as antineoplastic agents against a variety of human cancer cell lines, with some compounds being submitted to clinical trials. In this work, we report the synthesis, characterization and cytotoxicity potential of a new series of quinoxalinyl-hydrazones. The most cytotoxic compound was (E)-2-[2-(2-pyridin-2-ylmethylene)hydrazinyl]quinoxaline (PJOV56) that presented a time-dependent effect against HCT-116 cells. After 48 h of incubation, PJOV56 was able to induce autophagy and apoptosis of HCT-116 cells, mediated by upregulation of Beclin 1, upregulation of LC3A/B II and activation of caspase 7. Apoptosis was induced along with G0/G1 cell cycle arrest at the highest concentration of PJOV56 (6.0 µM). Thus, PJOV56 showed a dose-dependent mode of action related to induction of autophagy and apoptosis in HCT-116 cells.
Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Hidrazonas/síntesis química , Quinoxalinas/síntesis química , Humanos , Hidrazonas/química , Quinoxalinas/química , Relación Estructura-ActividadRESUMEN
Turbinaria deccurrens Bory contains bioactive compound that is beneficial for health. Turbinaria deccurrens Bory is one of many species of brown seaweed that grows in Indonesian marine life and has been known to have cytotoxic activity. The aim of this study is to determine fucoxantin content and the cytotoxic activity of extract and fraction T. decurrens on colon cancer cell lines. Cytotoxic assay of ethanolic extract, n-hexane, ethyl acetate and ethanolic fractions against HCT-116 by MTS assay using Cell Counting Kit-8 (CCK-8). Fucoxantin content in extract and fraction were analyzed using Reversed-Phase High Performance Liquid Chromatography (RP-HPLC) analysis. Extract and fraction of T. decurrens contain fucoxanthin with the highest content of fucoxanthin was in ethyl acetate fraction. CCK-8 assay showed that extract, n-hexane and ethyl acetate fraction inhibited the growth of HCT-116. Brown seaweed Turbinaria decurrens was potential as an anticolon cancer agent.
Turbinaria deccurrens Bory contiene compuestos bioactivos que son beneficiosos para la salud. Turbinaria deccurrens Bory es una de muchas especies de algas pardas que crecen en aguas marinas de Indonesia y se ha estudiado su actividad citotóxica. El objetivo de este estudio fue determinar el contenido de fucoxantina y la actividad citotóxica del extracto y la fracción de T. decurrens en líneas celulares de cáncer de colon. Se llevó a cabo un ensayo citotóxico de extracto etanólico, nhexano, acetato de etilo y fracciones etanólicas contra HCT-116 mediante ensayo MTS utilizando Cell Counting Kit-8 (CCK-8). El contenido de fucoxantina en el extracto y la fracción se analizaron usando cromatografía líquida de alta resolución de fase reversa (RP-HPLC). El extracto y la fracción de T. decurrens contienen fucoxantina conmayor contenido de fucoxantina en la fracción de acetato de etilo. El ensayo CCK-8 mostró que la fracción de extracto, n-hexano y acetato de etilo inhibía el crecimiento de HCT-116. El alga marrón Turbinaria decurrens es un agente potencial contra el cáncer de colon.
Asunto(s)
Extractos Vegetales/administración & dosificación , Neoplasias del Colon/tratamiento farmacológico , Xantófilas/administración & dosificación , Células HCT116/efectos de los fármacos , Phaeophyceae , Extractos Vegetales/química , Xantófilas/análisis , Línea Celular Tumoral/efectos de los fármacosRESUMEN
This work examines the antitumor activity of an isomeric mixture (1), composed of the limonoids meliartenin and its interchangeable isomer 12-hydroxyamoorastatin. The results obtained showed that 1 displayed outstanding cytotoxic activity against CCRF-CEM, K562, A549 and HCT116 cells, with a highly selective effect on the latter, with an IC50 value of 0.2 µM. Based on this finding, HCT116 cells were selected to study the mechanism of action of 1. Cell cycle analysis revealed that 1 induced sustained arrest in the S-phase, which was followed by the triggering of apoptotic cell death and reduced clonogenic capacity. This cytotoxicity was seen to be preceded by the upregulation of the tumor suppressor p53 and its target effector p21. In addition, it was found that p53 expression was required for efficient cell death induction, and thus that the toxicity of 1 relies mainly on p53-dependent mechanisms. Taken together, these findings position 1 as a potent antitumor agent, with potential for the development of novel chemotherapeutic drugs based on the induction of S-phase arrest.
Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/fisiopatología , Limoninas/farmacología , Melia azedarach/química , Extractos Vegetales/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Antineoplásicos Fitogénicos/química , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Células HCT116 , Humanos , Limoninas/química , Extractos Vegetales/química , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Abstract Echinochloa crus-galli (L.) P. Beauv., Poaceae, grains are used as a feed for birds and millet for humans. The sulforhodamine B assay was used to assess its cytotoxicity against four human cancer cell lines. The ethanolic extract (70%) proved to be most active against HCT-116 and HELA cell lines (IC50 = 11.2 ± 0.11 and 12.0 ± 0.11 µg/ml, respectively). On the other hand, the chloroform and ethyl acetate fractions exhibited their highest activities against HCT-116 cell lines. The chloroform and ethyl acetate fractions were subjected to several chromatographic separations to render pure phenolic compounds (1-8). Compounds 1-8 were identified as: 5,7-dihydroxy-3′,4′,5′-trimethoxy flavone, 5,7,4′-trihydroxy-3′,5′-dimethoxy flavone (tricin), quercetin, flavone, apigenin-8-C-sophoroside, 2-methoxy-4-hydroxy cinnamic acid, p-coumaric acid and quercetin-3-O-glucoside. All the isolated phenolic compounds exhibited various significant activities against the four human carcinoma where the methoxylated flavones (1 and 2) were the most active, in a way comparable to the anticancer drug Doxorubicin®. Thus, these methoxylated flavonoids may be considered as lead compounds for the treatment of cancer, which supports previous claims of E. crus-galli traditional use. This is the first report of the occurrence of these phenolic compounds in E. crus-galli.