Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Discov Med ; 36(181): 323-331, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38409837

RESUMEN

BACKGROUND: Childhood asthma is a chronic inflammatory disease of the respiratory tract characterized by bronchial inflammation, airway hyperresponsiveness, airflow disorder, and obstruction. Secreted frizzled-related protein 5 (SFRP5) may be associated with respiratory inflammatory diseases. This study investigated the effect of SFRP5 on human airway smooth muscle cells (HASMCs) to provide new ideas for treating asthma. METHODS: A total of 30 children with asthma and 30 children who had a physical examination at the same time were selected and divided into asthma and healthy groups. Serum SFRP5 levels were determined by enzyme-linked immunosorbent assay (ELISA) and real-time quantitative polymerase chain reaction (RT-qPCR). Lipofectamine 2000™ regent was used to transfect the SFRP5 overexpression plasmid (pc-SFRP5) or corresponding negative control (pc-NC) into HASMCs. HASMCs were treated with 10 µg/L platelet-derived growth factor-BB (PDGF-BB), which is an inducer to mimic the asthma-like condition at the cellular level of childhood asthma. HASMCs were divided into control, PDGF-BB (PDGF-BB treatment), PDGF-BB+pc-NC (pc-NC transfection and PDGF-BB treatment), and PDGF-BB+pc-SFRP5 (pc-SFRP5 transfection and PDGF-BB treatment) groups. Cell proliferation was measured by 5-ethynyl-2'-deoxyuridine (EdU) and cell counting kit-8 (CCK-8) assay. Cell migration was detected by Transwell assay. The protein expression was detected by western blot. RESULTS: Serum SFRP5 expression in the asthmatic group was decreased versus the healthy group (p < 0.0001). Induction of PDGF-BB decreased SFRP5 expression in HASMCs (p < 0.01). SFRP5 expression in the pc-SFRP5 group was increased (p < 0.01). The proliferation and migration of HASMCs increased after PDGF-BB treatment (p < 0.001, p < 0.0001), indicating that the asthma model was successfully inducted in vitro. Moreover, the expression of ß-catenin, cellular-myelocytomatosis viral oncogene (c-Myc), and cyclinD1 proteins in HASMCs increased after PDGF-BB treatment (p < 0.0001). SFRP5 overexpression partly inhibited PDGF-BB-induced proliferation, migration, and expressions of ß-catenin, c-Myc, and cyclinD proteins in HASMCs (p < 0.01, p < 0.001, p < 0.0001). CONCLUSIONS: Serum SFRP5 expression decreases in children with asthma. SFRP5 overexpression partially inhibits PDGF-BB-induced HASMC proliferation and migration by regulating the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt)/ß-catenin pathway.


Asunto(s)
Asma , beta Catenina , Animales , Niño , Ratones , Humanos , Becaplermina/metabolismo , Becaplermina/farmacología , beta Catenina/metabolismo , beta Catenina/farmacología , Vía de Señalización Wnt/genética , Asma/genética , Asma/metabolismo , Asma/patología , Proliferación Celular/genética , Pulmón/metabolismo , Movimiento Celular , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Células Cultivadas , Proteínas Adaptadoras Transductoras de Señales/metabolismo
2.
Ann Transl Med ; 11(10): 350, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37675298

RESUMEN

Background: Thoracic aortic dissection (TAD) is a very serious vascular condition that requires immediate treatment. Phenotypic conversion of human aortic smooth muscle cells (HASMCs) has been reported to be a causal factor for TAD development. Genetic variations affecting RNA modification may play a functional role in TAD. In this study, we aimed to explore the potential role of the methyltransferase like 3 (METTL3) and notch homolog 1 (NOTCH1) N6-methyladenosine (m6A) modification mechanisms in HASMCs. Methods: HASMCs were cultured. METTL3 was knocked down and overexpressed. Then, both METTL3 and NOTCH1 were simultaneously knocked down in HASMCs. HASMC proliferation was determined using Cell Counting Kit-8 (CCK-8). METTL3, NOTCH1, α-smooth muscle actin (α-SMA), smooth muscle protein 22-alpha (SM22α), and calponin expressions were monitored with quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. An m6A dot blot assay was used to examine the m6A modification levels. The NOTCH1 3' untranslated region (3'UTR) m6A modification was analyzed using SRAMP and RMBase v. 2.0. A methylated RNA immunoprecipitation (MeRIP) assay was used to evaluate the METTL3 overexpression effect on m6A modification of NOTCH1 messenger RNA (mRNA). A dual-luciferase assay was used to investigate the effect of METTL3 binding of the NOTCH1 mRNA m6A modification site. YTH domain family 2 (YTHDF2)-RNA immunoprecipitation (RIP) was used to detect the change in YTHDF2's ability to bind to NOTCH1 mRNA after METTL3 overexpression. Results: Overexpression of METTL3 inhibited α-SMA, SM22α, calponin, and NOTCH1 expressions and promoted HASMC proliferation. Knocking down METTL3 had the opposite effect. The cointerference of the METTL3 and NOTCH1 results suggested that METTL3 regulated NOTCH1, contributing to HASMC phenotypic changes. The MeRIP assay showed that the m6A modification of NOTCH1 mRNA increased after METTL3 overexpression. The dual-luciferase assay indicated that the NOTCH1 mRNA m6A modification site and METTL3 overexpression promoted NOTCH1 mRNA degradation. YTHDF2-RIP further demonstrated that the binding ability of YTHDF2 and NOTCH1 mRNA was enhanced after METTL3 overexpression. Conclusions: METTL3 regulated the phenotypic changes of HASMC by upregulating m6A modification of NOTCH1 and inhibiting NOTCH1.

3.
Biochem Biophys Res Commun ; 630: 133-142, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36155059

RESUMEN

The phenotypic transformation of vascular smooth muscle cells (VSMCs) plays a key role in the pathological process of atherosclerosis (AS), and TRPM7 is involved in this process. In this study, we verified whether circRNAs participate in the phenotypic transformation of VSMCs by regulating TRPM7 in AS. The RNA-sequencing data of atherosclerosis were downloaded and analysed from the GEO database. Only hsa_circ_0021155 related to TRPM7 was differentially expressed in AS. circRNA distribution and expression were observed via FISH and PCR. CCK8, scratch test and Transwell assay were used to observe the proliferation and migration of cells. Western blot was performed to examine changes in α-actin, calponin, SMMHC and TRPM7 proteins. The expression of hsa_circ_0021155 against has-miR-4459/miR-3689c was verified via PCR. The ceRNA relationship of TPRM7-miR4459-circ0021155 was verified via dual luciferase assay, and the effects of miR4459 mimic/inhibitor on the proliferation of cells were further observed. The expression of hsa_circ_0021155 and OX-LDL was increased in VSMCs. hsa_circ_0021155 promoted the expression of TRPM7 and inhibited the protein expression of α-actin, calponin and SMMHC. In addition, it promoted the proliferation and migration of cells and inhibited the expression of miR-3689c and miR-4459 but did not affect miR-4756-5p. The dual luciferase assay showed that circ0021155-miR4459-TRPM7 mRNA was highly compatible and could be mutually regulated by a ceRNA network. In conclusion, hsa_circ_0021155 regulates the proliferation, migration and phenotype transformation of VSMCs induced by OX-LDL via the miR-4459/TRPM7 axis. hsa_circ_0021155 and TRPM7 may offer novel therapeutic targets for atherosclerosis.


Asunto(s)
Aterosclerosis , MicroARNs , Canales Catiónicos TRPM , Actinas/metabolismo , Apoptosis/genética , Aterosclerosis/genética , Aterosclerosis/patología , Movimiento Celular/genética , Proliferación Celular/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas , ARN Circular/genética , ARN Mensajero , Canales Catiónicos TRPM/genética
4.
BMC Mol Cell Biol ; 22(1): 56, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34749662

RESUMEN

BACKGROUND: Abnormal proliferation and migration of human airway smooth muscle cells (HASMCs) play an important role in the development of childhood asthma. Long non-coding RNAs (lncRNAs) have been demonstrated to participate in HASMC proliferation and migration. We aimed to explore more effects and molecular mechanism of taurine upregulated gene 1 (TUG1) in childhood asthma. RESULTS: TUG1 and SMURF2 were overexpressed and miR-216a-3p was downregulated in childhood asthma patients and PDGF-BB-stimulated HASMCs. TUG1 knockdown attenuated PDGF-BB-triggered proliferation and migration of HASMCs. MiR-216a-3p was targeted by TUG1, and miR-216a-3p suppression counteracted the repressive effects of TUG1 interference on proliferation and migration in PDGF-BB-treated HASMCs. SMURF2 was a downstream target of miR-216a-3p, and SMURF2 upregulation abated the inhibiting effects of miR-216a-3p on migration and proliferation in PDGF-BB-exposed HASMCs. TUG1 sponged miR-216a-3p to positively regulate SMURF2 expression. CONCLUSION: TUG1 downregulation inhibited PDGF-BB-induced HASMC proliferation and migration by regulating miR-216a-3p/SMURF2 axis, offering novel insight into the potential application of TUG1 for childhood asthma treatment.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Becaplermina , Proliferación Celular/genética , Humanos , MicroARNs/genética , Miocitos del Músculo Liso , ARN Largo no Codificante/genética , Taurina , Ubiquitina-Proteína Ligasas/genética
5.
Front Pharmacol ; 12: 692431, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744705

RESUMEN

Vascular calcification (VC) in macrovascular and peripheral blood vessels is one of the main factors leading to diabetes mellitus (DM) and death. Apart from the induction of vascular calcification, advanced glycation end products (AGEs) have also been reported to modulate autophagy and apoptosis in DM. Autophagy plays a role in maintaining the stabilization of the external and internal microenvironment. This process is vital for regulating arteriosclerosis. However, the internal mechanisms of this pathogenic process are still unclear. Besides, the relationship among autophagy, apoptosis, and calcification in HASMCs upon AGEs exposure has not been reported in detail. In this study, we established a calcification model of SMC through the intervention of AGEs. It was found that the calcification was upregulated in AGEs treated HASMCs when autophagy and apoptosis were activated. In the country, AGEs-activated calcification and apoptosis were suppressed in Atg7 knockout cells or pretreated with wortmannin (WM), an autophagy inhibitor. These results provide new insights to conduct further investigations on the potential clinical applications for autophagy inhibitors in the treatment of diabetes-related vascular calcification.

6.
Front Biosci (Landmark Ed) ; 26(8): 395-404, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34455769

RESUMEN

MicroRNAs (miRNAs) have been regarded as modulators in vascular pathologies, including hypertension. Dysregulated proliferation and migration of VSMCs (vascular smooth muscle cells) contributes to vascular remodeling during hypertension. miR-634 was reported to be dysregulated in hypertensive patients. The involvement of miR-634 in hypertension and the role of miR-634 on VSMCs proliferation and migration were then evaluated. Firstly, HASMCs (human aortic smooth muscle cells) were incubated with 2 µM angiotensin (Ang) II for 12 hours to establish the cell model of Ang II-induced hypertension. Results showed that Ang II treatment promoted proliferation and migration of HASMCs. Secondly, miR-634 was down-regulated in the hypertensive patients, and reduced in Ang II-induced HASMCs in a time dependent manner. Functional assays revealed that Ang II promoted proliferation and migration of HASMCs were suppressed by miR-634 mimic. Lastly, miR-634 targeted 3' untranslated region (UTR) of Wnt4, and reduced Wnt4 expression in HASMCs. miR-634 inhibited ß-catenin nuclear translocation. Over-expression of Wnt4 counteracted the suppressive effects of miR-634 on Ang II-induced proliferation and migration of HASMCs. In conclusion, miR-634 inhibited HASMCs proliferation and migration through inactivation of Wnt4/ß-catenin pathway.


Asunto(s)
Hipertensión , MicroARNs , Miocitos del Músculo Liso/citología , Vía de Señalización Wnt , Movimiento Celular , Proliferación Celular , Células Cultivadas , Humanos , Hipertensión/inducido químicamente , Hipertensión/genética , MicroARNs/genética , Músculo Liso Vascular , Proteína Wnt4 , beta Catenina/genética
7.
Front Biosci (Landmark Ed) ; 26(6): 125-134, 2021 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-34162041

RESUMEN

This study aimed to investigate the effects of advanced glycation end products (AGEs) on the calcification of human arterial smooth muscle cells (HASMCs) and to explore whether AGEs can promote the calcification of HASMCs by activating the phosphoinositide 3-kinase (PI3K)/AKT-glycogen synthase kinase 3 beta (GSK3-ß) axis. Cultured HASMCs were divided into five groups: blank control group, dimethyl sulfoxide (vehicle) group, AGEs group, LY294002 (AKT inhibitor) group, and TWS119 (GSK3-ß inhibitor) group. Cells were pretreated with either vehicle, LY294002, or TWS119 for 2 hours followed by incubation with AGEs (25 µg/mL) for 5 days, and the expression levels of proteins in each group were analyzed by western blotting. AGE treatment promoted HASMC calcification, which coincided with increased expression of p-AKT and p-GSK3-ß (serine 9). Also, AGEs upregulated the expression of osteoprotegerin and bone morphogenetic protein, and these effects were suppressed by LY294002 but enhanced by TWS119. In conclusion, AGEs promote calcification of HASMCs, and this effect is ameliorated by inhibition of AKT activity but potentiated by inhibition of GSK3-ß activity. Hence, AGEs trigger HASMC calcification by regulating PI3K/AKT-GSK3-ß signaling.


Asunto(s)
Arterias/patología , Calcinosis/fisiopatología , Productos Finales de Glicación Avanzada/fisiología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Músculo Liso Vascular/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Células Cultivadas , Humanos
8.
Mol Cell Biochem ; 476(10): 3551-3561, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34014438

RESUMEN

Vascular calcification is one of the most common effects of macrovascular complications in patients in aging with chronic kidney disease and diabetes. Previous studies showed that HOTAIR attenuated vascular calcification via the Wnt/ß-catenin-signaling pathway, yet the molecular mechanism has not been fully elucidated. This study aimed to identify the explicit molecular mechanism underlying HOTAIR regulated vascular calcification. In the phosphate (Pi)-induced calcification model of human aortic smooth muscle cells (HASMCs), we investigated whether HOTAIR was involved in the regulation of miR-126. The luciferase reporter was used to examine the effect of HOTAIR on miR-126 and miR-126 on Klotho 3'-UTR. Furthermore, we overexpressed Klotho to verify the regulation of Klotho on SIRT1, as well as their roles in mediating Pi-induced calcification in HASMCs via the Wnt/ß-catenin signaling pathway. Finally, the results were verified in an in vivo mice calcification model. Overexpression of HOTAIR reduced the expression of miR-126 in Pi-induced HASMCs. Additionally, knockdown of miR-126 increased SIRT1 expression by regulating Klotho expression. An increased level of Klotho inhibited Wnt/ß-catenin signaling pathway, which eventually attenuated Pi-induced HASMCs calcification. Luciferase reporter assay revealed that HOTAIR targeted miR-126 and miR-126 could directly target Klotho. Eventually, HOTAIR overexpression reversed Pi-induced calcium calcification in vivo mouse models. This study demonstrated that HOTAIR overexpression attenuated Pi-induced calcification by regulating the miR-126/Klotho/SIRT1 axis, thereby inhibiting the Wnt/ß-catenin signaling pathway. It provides new potential target genes for the clinical treatment of vascular calcification.


Asunto(s)
Glucuronidasa/metabolismo , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Sirtuina 1/metabolismo , Calcificación Vascular/metabolismo , Vía de Señalización Wnt , Animales , Línea Celular , Glucuronidasa/genética , Humanos , Proteínas Klotho , Masculino , Proteínas de la Membrana/genética , Ratones , MicroARNs/genética , ARN Largo no Codificante/genética , Sirtuina 1/genética , Calcificación Vascular/genética , Calcificación Vascular/patología
9.
Front Pharmacol ; 12: 621854, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841150

RESUMEN

In oat ingredients, flavonoids and phenolic acids are known to be the most important phenolic compounds. In phenolic compounds, wide-ranging biological responses, including antioxidative, anti-inflammatory, anti-allergic, and anti-cancer properties, were reported. Avenanthramide C (Avn C), a component of the phenolic compound of oats, has been reported to be highly antioxidant and anti-inflammatory, but its role in an anti-atherosclerosis response is unknown. The aim of this research was to assess the effect of Avn C on expression of MMP-9 on TNF-α-activated human arterial smooth-muscle cells (HASMC) and signaling involved in its anti-atherosclerosis activity. HASMC cells are known to produce inflammatory cytokines involving IL-6, IL-1ß, and TNF-α during arteriosclerosis activity. Avn C specifically reduced IL-6 secretion in HASMC cells. Furthermore, we investigated whether Avn C could inhibit NF-κB nuclear protein translocation. Avn C suppressed nuclear protein translocation of NF-κB in TNF-α-stimulated HASMCs. The MMP-9 enzyme activity and expression are controlled through the MAPKs signaling path during the Avn C treatment. We confirmed that the levels of wound healing (p-value = 0.013, *p < 0.05) and migration (p-value = 0.007, **p < 0.01) are inhibited by 100 ng/ml TNF-α and 100 µM Avn C co-treated. Accordingly, Avn C inhibited the expression of MMP-9 and cell migration through the MAPK/NF-κB signaling pathway in TNF-α-activated HASMC. Therefore, Avn C can be identified and serve as disease prevention material and remedy for atherosclerosis.

10.
Hum Cell ; 34(2): 335-348, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33106979

RESUMEN

Long non-coding RNA Plasmacytoma Variant Translocation 1 (LncRNA PVT1) was involved in various human diseases, but its role in aortic dissection (AD) remained to be fully examined. In this study, the viability and migration of human aortic smooth muscle cells (HASMCs) were respectively measured by MTT assay and wound-healing assay. Relative phenotypic switch-related protein expressions were measured with quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot as needed. An AD model was established in animals and hematoxylin-eosin (H&E) staining was used for pathological examination. We found that, in HASMCs, microRNA (miR)-27b-3p could competitively bind with PVT1. In AD, PVT1 expression was upregulated, yet that of miR-27b-3p was downregulated. Downregulating PVT1 reversed the effects of growth factor-BB (PDGF-BB) treatment on PVT1, miR-27b-3p and expressions of phenotypic switch-related markers, and cell viability and migration, while downregulating miR-27b-3p reversed the effects of downregulating PVT1. Moreover, downregulating PVT1 suppressed the effects of upregulated PVT1 and downregulated miR-27b-3p induced by AD as well as media degeneration in vivo. In conclusion, downregulating PVT1 expression suppressed the proliferation, migration and phenotypic switch of HASMCs treated by PDGF-BB via targeting miR-27b-3p.


Asunto(s)
Aorta/citología , Becaplermina/farmacología , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica/genética , Expresión Génica/genética , MicroARNs/metabolismo , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Fenotipo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Células Cultivadas , Humanos
11.
Pharmacol Res ; 159: 105039, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32565313

RESUMEN

The gasotransmitter hydrogen sulfide (H2S) is involved in the regulation of the vascular tone and an impairment of its endogenous production may play a role in hypertension. Thus, the administration of exogenous H2S may be a possible novel and effective strategy to control blood pressure. Some natural and synthetic sulfur compounds are suitable H2S-donors, exhibiting long-lasting H2S release; however, novel H2S-releasing agents are needed to improve the pharmacological armamentarium for the treatment of cardiovascular diseases. For this purpose, N-phenylthiourea (PTU) and N,N'-diphenylthiourea (DPTU) compounds have been investigated as potential H2S-donors. The thioureas showed long-lasting H2S donation in cell free environment and in human aortic smooth muscle cells (HASMCs). In HASMCs, DPTU caused membrane hyperpolarization, mediated by activation of KATP and Kv7 potassium channels. The thiourea derivatives promoted vasodilation in rat aortic rings, which was abolished by KATP and Kv7 blockers. The vasorelaxing effects were also observed in angiotensin II-constricted coronary vessels. In conclusion, thiourea represents an original H2S-donor functional group, which releases H2S with slow and long lasting kinetic, and promotes typical H2S-mediated vascular effects. Such a moiety will be extremely useful for developing original cardiovascular drugs and new chemical tools for investigating the pharmacological roles of H2S.


Asunto(s)
Sulfuro de Hidrógeno/farmacología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Feniltiourea/farmacología , Tiourea/análogos & derivados , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Presión Sanguínea/efectos de los fármacos , Células Cultivadas , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/metabolismo , Humanos , Preparación de Corazón Aislado , Canales KATP/agonistas , Canales KATP/metabolismo , Canales de Potasio KCNQ/agonistas , Canales de Potasio KCNQ/metabolismo , Masculino , Potenciales de la Membrana , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Ratas Wistar , Tiourea/farmacología
12.
Biosci Rep ; 40(6)2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32463098

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) is considered as an endogenous negative regulator of renin-angiotensin system (RAS), exerting multiple cardiovascular protective roles. Whether mechanical stretch modulates ACE2 expression remains unknown. The present study aimed at investigating whether ACE2 is involved in physiological stretch (10% elongation, 1 Hz) mediated cellular functions and the underlying mechanism. Cultured human aortic smooth muscle cells (HASMCs) were exposed to 10% stretch for indicated time, and real-time PCR and Western blot analysis showed 10% stretch increased ACE2 expression and activity significantly compared with static conditions and increased Ang-(1-7) level, but decreased Ang II level; Brdu incorporation assay and Scratch test showed that ACE2 was involved in the inhibition of HASMCs proliferation and migration by 10% stretch; the Dual-Luciferase Reporter Assay demonstrated that 10% increased ACE2 promoter activity, but had no effect on ACE2 mRNA stability; kinase inhibition study and Electrophoretic mobility shift assay (EMSA) showed that JNK1/2 and PKCßII pathway, as well as their downstream transcription factors, AP-1 and NF-κB, were involved in 10% stretch induced ACE2 expression. In conclusion, our study indicates ACE2 is a mechanosensitive gene, and may represent a potential therapeutic target for mechanical forces related vascular diseases.


Asunto(s)
Enzima Convertidora de Angiotensina 2/biosíntesis , Movimiento Celular , Proliferación Celular , Mecanotransducción Celular , Husos Musculares/metabolismo , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Angiotensina I/metabolismo , Angiotensina II/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Células Cultivadas , Inducción Enzimática , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos , FN-kappa B/metabolismo , Fragmentos de Péptidos/metabolismo , Proteína Quinasa C beta/metabolismo , Factor de Transcripción AP-1/metabolismo
13.
Biosci Biotechnol Biochem ; 84(8): 1585-1593, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32432500

RESUMEN

C-C motif Chemokine ligand 8 (CCL8) has been found in diseases' pathogenesis. But its molecular mechanism in atherosclerosis (AS) remains to be elucidated. Human aortic smooth muscle cells (HASMCs) were stimulated by PDGF-BB to establish cell model. α-SMA in PDGF-BB-stimulated HASMCs was measured by immunofluorescence staining. Relative gene expressions in PDGF-BB-stimulated HASMCs were detected by quantitative real-time polymerase chain reaction and western blot. HASMCs proliferation, migration, and cell cycle were assessed by cell counting kit-8, wound-healing assay, and flow cytometry. HASMCs viability was increased after PDGF-BB stimulation, with α-SMA downregulation yet CCL8 upregulation. Silencing CCL8 inhibited PDGF-BB-stimulated HASMCs proliferation and migration, and increased cells percentage in G1 phases but decreased those in S phase. Also, silencing CCL8 decreased OPN and cyclinD1 expressions and AKT and ERK1/2 phosphorylation while increased those of α-SMA and Sm22α. However, upregulating CCL8 led to opposite effects, suggesting CCL8 could be an atherosclerosis therapeutic target.


Asunto(s)
Becaplermina/farmacología , Ciclo Celular/efectos de los fármacos , Quimiocina CCL8/genética , Miocitos del Músculo Liso/efectos de los fármacos , Actinas/genética , Actinas/metabolismo , Aorta/citología , Aorta/metabolismo , Ciclo Celular/genética , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quimiocina CCL8/antagonistas & inhibidores , Quimiocina CCL8/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Regulación de la Expresión Génica , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Osteopontina/genética , Osteopontina/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal
14.
J Cell Mol Med ; 24(8): 4762-4772, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32155686

RESUMEN

Vascular smooth muscle cell (VSMC) proliferation is the pathological base of vascular remodelling diseases. Circular RNAs (circRNAs) are important regulators involved in various biological processes. However, the function of circRNAs in VSMC proliferation regulation remains largely unknown. This study was conducted to identify the key differentially expressed circRNAs (DEcircRNAs) and predict their functions in human aortic smooth muscle cell (HASMC) proliferation. To achieve this, DEcircRNAs between proliferative and quiescent HASMCs were detected using a microarray, followed by quantitative real-time RT-PCR validation. A DEcircRNA-miRNA-DEmRNA network was constructed, and functional annotation was performed using Gene Ontology (GO) and KEGG pathway analysis. The function of hsa_circ_0002579 in HASMC proliferation was analysed by Western blot. The functional annotation of the DEcircRNA-miRNA-DEmRNA network indicated that the four DEcircRNAs might play roles in the TGF-ß receptor signalling pathway, Ras signalling pathway, AMPK signalling pathway and Wnt signalling pathway. Twenty-seven DEcircRNAs with coding potential were screened. Hsa_circ_0002579 might be a pro-proliferation factor of HASMC. Overall, our study identified the key DEcircRNAs between proliferative and quiescent HASMCs, which might provide new important clues for exploring the functions of circRNAs in vascular remodelling diseases.


Asunto(s)
Aorta/crecimiento & desarrollo , Proliferación Celular/genética , Músculo Liso Vascular/crecimiento & desarrollo , ARN Circular/genética , Aorta/metabolismo , Técnicas de Cultivo de Célula , Regulación del Desarrollo de la Expresión Génica/genética , Ontología de Genes , Redes Reguladoras de Genes/genética , Humanos , MicroARNs/genética , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal/genética
15.
Arch Med Sci ; 15(6): 1490-1497, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31749878

RESUMEN

INTRODUCTION: Arteriosclerosis obliterans (ASO) is a disease that affects the lower extremities. The mechanism of ASO is associated with the proliferation and migration of vascular smooth muscle cells (VSMCs). miR-21 plays a key role in various biological processes of the cardiovascular system, associated with the proliferation, migration and apoptosis of VSMCs. It is unclear, however, if miR-21 is involved in the regulation of ASO. MATERIAL AND METHODS: Human aortic smooth muscle cells (HASMCs) were transfected with miR-21 mimics and co-treated with protein kinase B (AKT) or a mitogen-activated protein kinase (ERK) inhibitor. Expression levels of p-AKT or p-ERK were measured by western blot. Cell apoptosis was assessed using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and visualized under a fluorescence microscope. Cell proliferation was monitored by bromodeoxyuridine (BrdU) labeling; cell migration and invasion were determined by the Transwell assay. RESULTS: miR-21 was upregulated in arteries of ASO, the pathogenesis of which involved the activation of p-AKT and p-ERK1/2. Inhibition of the AKT or ERK activity was consistent with the attenuation of the miR-21-induced HASMC migration and proliferation. HASMCs co-treated with miR-21 mimics and AKT or ERK inhibitor showed attenuation of the miR-21-induced high elongation ratio. CONCLUSIONS: We demonstrated that the expression of miR-21 in HASMCs could find potential application in cardiac therapy. Inhibition of the activity of AKT or ERK could attenuate miR-21-induced cell proliferation and migration as well as altering morphology of HASMCs. The present study aimed to indicate the potential roles of miR-21 in ASO processes, and the results provided a novel therapeutic approach for treating ASO and new targets for preventing ASO in earlier stages.

16.
Cells ; 8(12)2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31757003

RESUMEN

Pharmacological activation of protein kinase A (PKA) reduces migration of arterial smooth muscle cells (ASMCs), including those isolated from human arteries (HASMCs). However, when individual migration-associated cellular events, including the polarization of cells in the direction of movement or rearrangements of the actin cytoskeleton, are studied in isolation, these individual events can be either promoted or inhibited in response to PKA activation. While pharmacological inhibition or deficiency of exchange protein activated by cAMP-1 (EPAC1) reduces the overall migration of ASMCs, the impact of EPAC1 inhibition or deficiency, or of its activation, on individual migration-related events has not been investigated. Herein, we report that EPAC1 facilitates the formation of leading-edge protrusions (LEPs) in HASMCs, a critical early event in the cell polarization that underpins their migration. Thus, RNAi-mediated silencing, or the selective pharmacological inhibition, of EPAC1 decreased the formation of LEPs by these cells. Furthermore, we show that the ability of EPAC1 to promote LEP formation by migrating HASMCs is regulated by a phosphodiesterase 1C (PDE1C)-regulated "pool" of intracellular HASMC cAMP but not by those regulated by the more abundant PDE3 or PDE4 activities. Overall, our data are consistent with a role for EPAC1 in regulating the formation of LEPs by polarized HASMCs and show that PDE1C-mediated cAMP hydrolysis controls this localized event.


Asunto(s)
Aorta Torácica/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal , Aorta Torácica/efectos de los fármacos , Células Cultivadas , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Humanos , Miocitos del Músculo Liso/efectos de los fármacos , Quinolinas/farmacología , ARN Interferente Pequeño/farmacología , Transducción de Señal/efectos de los fármacos
17.
Methods Mol Biol ; 2007: 79-87, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31148107

RESUMEN

Hydrogen sulfide (H2S) evokes vascular effects through several mechanisms including in wide part the activation of some ion channels such as ATP-sensitive potassium (KATP) channels and voltage-gated Kv7 potassium channels. Electrophysiological methods are very accurate, but they require high expertise and high specialized equipment. A more manageable fluorimetric technique which allows to record the membrane potential variations by the employment of an anionic bis-oxonol dye named DiBac4(3) with the administration of different blockers of several potassium channels could be useful to discover the targets of H2S-induced vascular hyperpolarization. Coupled with this technique, a fluorimetric detection (by the use of WSP-1 dye) of H2S generation in human vascular smooth muscle cells after H2S-donor administration could confirm the ability of these molecules to evoke the hyperpolarizing effect through the H2S release.


Asunto(s)
Aorta/metabolismo , Fluorometría , Sulfuro de Hidrógeno , Canales de Potasio KCNQ/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Aorta/citología , Barbitúricos/química , Línea Celular , Humanos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Isoxazoles/química , Canales de Potasio KCNQ/antagonistas & inhibidores , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Bloqueadores de los Canales de Potasio/farmacología
18.
Toxicol Appl Pharmacol ; 374: 11-19, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31047983

RESUMEN

It has been shown before that exposure to nanomaterials (NMs) might promote the formation of foam cells, the key cells involved in all stages of atherosclerosis. However, to our best knowledge, previous studies, particularly in vitro studies, only investigated the transformation of macrophages into foam cells, whereas the importance of smooth muscle cells (SMCs) was overlooked. The present study investigated the toxicity of pristine multi-walled carbon nanotubes (MWCNTs; Code XFM19) and carboxylated MWCNTs (Code XFM21) to human aortic smooth muscle cells (HASMCs). The results showed that exposure to both types of MWCNTs significantly reduced mitochondrial activity but might not damage lysosomes. MWCNT exposure had minimal impact on cytokine release but significantly promoted lipid accumulation, which was significantly inhibited when the cells were pre-incubated with ER stress inhibitors or antioxidants. The mRNA levels of ER stress markers DDIT3 and XBP-1 s and protein levels of chop and p-chop were induced particularly by XFM21, accompanying with increased SREBF1 and SREBF2 mRNA as well as FASN protein, the key regulators involved in de novo lipogenesis. In addition, the mRNA levels of KLF4 and KLF5 and protein levels of KLF were induced after exposure to both types of MWCNTs, associated with an increase of CD68 protein levels. We concluded that MWCNTs might promote lipid accumulation in HASMCs through the induction of ER stress leading to de novo lipogenesis, as well as the activation of KLF pathway resulting in SMC transformation.


Asunto(s)
Aorta/citología , Miocitos del Músculo Liso/efectos de los fármacos , Nanotubos de Carbono/toxicidad , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Glutatión , Humanos , Factor 4 Similar a Kruppel , Metabolismo de los Lípidos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno
19.
Int J Nanomedicine ; 13: 8037-8049, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30568444

RESUMEN

PURPOSE: To evaluate the adverse vascular effects of nanoparticles (NPs) in vitro, extensive studies have investigated the toxicity of NPs on endothelial cells, but the knowledge of potential toxicity on human smooth-muscle cells (SMCs) is currently limited. METHODS: This study compared the toxicity of TiO2, ZnO, and Ag NPs to human aortic SMCs. RESULTS: Only ZnO NPs significantly induced cytotoxicity, accompanied by increased intracellular reactive oxygen species, Zn ions, and endoplasmic reticulum stress biomarkers (DDIT3 expression and p-Chop proteins). All the NPs significantly promoted the release of soluble VCAM1 and soluble sICAM1, but not IL6, which suggested that metal-based NPs might promote inflammatory responses. Furthermore, KLF4 expression (a transcription factor for SMC-phenotype switch) was significantly induced by TiO2 NPs and modestly by ZnO NPs, but the expression of CD68 remained unaltered. CONCLUSION: Our data indicated that ZnO NPs were more cytotoxic to human aortic SMCs than TiO2 and Ag NPs at the same mass concentrations, which might have been associated with intracellular reactive oxygen species, Zn ions, and endoplasmic reticulum stress.


Asunto(s)
Aorta/citología , Nanopartículas del Metal/toxicidad , Miocitos del Músculo Liso/citología , Plata/toxicidad , Titanio/toxicidad , Óxido de Zinc/toxicidad , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Biomarcadores/metabolismo , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Endocitosis , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Iones , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Nanopartículas del Metal/ultraestructura , Modelos Biológicos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/ultraestructura , Especies Reactivas de Oxígeno/metabolismo
20.
J Cell Biochem ; 119(4): 3528-3536, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29143982

RESUMEN

Asthma, an increasingly common chronic disease among children, are characterized by airway remodeling, which is partly attributed to the proliferation and migration of airway smooth muscle cell (ASMC). The purpose of the present study was to investigate potential roles and mechanisms of the tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible molecule 14 (Fn14) axis on cell proliferation and migration in HASMCs. Compared to HASMCs from non-asthmatic patients, those from asthmatic patients showed elevated expression levels of both Fn14 and TWEAK. Additionally, similar to the response triggered by platelet-derived growth factor-BB, stimulation with recombinant TWEAK strongly induced cell proliferation and migration in HASMCs. However, depletion of Fn14 remarkably abrogated the enhancement of TWEAK on the cell proliferation and migration of HASMCs. Furthermore, treatment with TWEAK led to the activation of NF-κB. This effect was eliminated by silencing Fn14, indicating that TWEAK-induced NF-κB signaling was mediated via Fn14. Moreover, the TWEAK/Fn14 interaction promoted cell proliferation and migration. These effects were blocked by NF-κB inhibitor SN50, which suggest that the TWEAK/Fn14 signaling system partially depends on NF-κB activity. Collectively, we demonstrated that the TWEAK/Fn14 axis accelerated HASMC cell proliferation and migration by activating the NF-κB pathway, thereby exacerbating airway remodeling in asthma. Altogether, these findings indicate a novel role for the TWEAK/Fn14/NF-κB pathway as a potent option for limiting airway remodeling in asthma.


Asunto(s)
Asma/metabolismo , Proliferación Celular/fisiología , Citocina TWEAK/metabolismo , Miocitos del Músculo Liso/metabolismo , FN-kappa B/metabolismo , Receptor de TWEAK/metabolismo , Cicatrización de Heridas/fisiología , Asma/genética , Western Blotting , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular/genética , Células Cultivadas , Citocina TWEAK/genética , Humanos , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología , Receptor de TWEAK/genética , Cicatrización de Heridas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA