Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 695
Filtrar
1.
EMBO Rep ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285248

RESUMEN

Precise spatiotemporal regulation of gene expression is of paramount importance for eukaryotic development. The maternal-to-zygotic transition (MZT) during early embryogenesis in Drosophila involves the gradual replacement of maternally contributed mRNAs and proteins by zygotic gene products. The zygotic genome is transcriptionally activated during the first 3 hours of development, in a process known as "zygotic genome activation" (ZGA), by the orchestrated activities of a few pioneer factors. Their decisive role during ZGA has been characterized in detail, whereas the contribution of chromatin factors to this process has been historically overlooked. In this review, we aim to summarize the current knowledge of how chromatin regulation impacts the first stages of Drosophila embryonic development. In particular, we will address the following questions: how chromatin factors affect ZGA and transcriptional silencing, and how genome architecture promotes the integration of these processes early during development. Remarkably, certain chromatin marks can be intergenerationally inherited, and their presence in the early embryo becomes critical for the regulation of gene expression at later stages. Finally, we speculate on the possible roles of these chromatin marks as carriers of epialleles during transgenerational epigenetic inheritance (TEI).

2.
Cell Biochem Biophys ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302619

RESUMEN

Gastric cancer (GC) is a malignant tumor with high incidence rate. H3K9me3 is related to transcriptional suppression and modulated by histone methyltransferase suppressor of variegation 3-9 homolog 1 (SUV39H1). SUV39H1 is dysregulated in assorted cancers and exerts the regulatory function. Nevertheless, the specific biofunction of SUV39H1 in GC needs further confirmation. SUV39H1 and H3K9me3 expressions were tested through RT-qPCR and western blot. Colony formation, wound healing, and transwell assays were employed for testing cell behaviors. ChIP assay was utilized for assessing the interaction between H3K9me3 and aldolase B (ALDOB). Xenograft experiment was employed for measuring tumor growth. We found that SUV39H1 and H3K9me3 were overexpressed in GC tissues and cells. SUV39H1 knockdown notably suppressed GC cell proliferative, migratory, and invasive capabilities. The treatment of chaetocin or F5446 (inhibitors of SUV39H1 enzymatic activity) also restrained GC cell behaviors. In addition, we discovered that SUV39H1 could negatively regulate ALDOB expression. SUV39H1 depletion reduced H3K9me3 modification to ALDOB promoter region. In rescue assays, we proved that ALDOB reduction reversed the inhibitory functions of SUV39H1 silencing on GC progression. Furthermore, tumor growth of mice was suppressed by sh-SUV39H1 transfection, chaetocin treatment, or F5446 treatment. In conclusion, SUV39H1 promoted GC progression by modulating the H3K9me3/ALDOB axis.

3.
Cell Mol Life Sci ; 81(1): 381, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222083

RESUMEN

Epigenetic modifications (methylation, acetylation, etc.) of core histones play a key role in regulation of gene expression. Thus, the epigenome changes strongly during various biological processes such as cell differentiation and dedifferentiation. Classical methods of analysis of epigenetic modifications such as mass-spectrometry and chromatin immuno-precipitation, work with fixed cells only. Here we present a genetically encoded fluorescent probe, MPP8-Green, for detecting H3K9me3, a histone modification associated with inactive chromatin. This probe, based on the chromodomain of MPP8, allows for visualization of H3K9me3 epigenetic landscapes in single living cells. We used this probe to track changes in H3K9me3 landscapes during the differentiation of induced pluripotent stem cells (iPSCs) into induced neurons. Our findings revealed two major waves of global H3K9me3 reorganization during 4-day differentiation, namely on the first and third days, whereas nearly no changes occurred on the second and fourth days. The proposed method LiveMIEL (Live-cell Microscopic Imaging of Epigenetic Landscapes), which combines genetically encoded epigenetic probes and machine learning approaches, enables classification of multiparametric epigenetic signatures of single cells during stem cell differentiation and potentially in other biological models.


Asunto(s)
Diferenciación Celular , Epigénesis Genética , Colorantes Fluorescentes , Histonas , Células Madre Pluripotentes Inducidas , Diferenciación Celular/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Histonas/metabolismo , Histonas/genética , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Neuronas/metabolismo , Neuronas/citología , Animales , Ratones
4.
Plant Physiol ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276362

RESUMEN

Verticillium wilt (VW) caused by Verticillium dahliae (V. dahliae) is one of the most destructive diseases in cotton (Gossypium spp.). Histone acetylation plays critical roles in plant development and adaptive responses to biotic and abiotic stresses. However, the relevance of histone acetylation in cotton VW resistance remains largely unclear. Here, we identified Histone Deacetylase 5 (GhHDA5) from upland cotton (Gossypium hirsutum L.), as a negative regulator of VW resistance. GhHDA5 expression was responsive to V. dahliae infection. Silencing GhHDA5 in upland cotton led to improved resistance to V. dahliae, while heterologous expression of GhHDA5 in Arabidopsis (Arabidopsis thaliana) compromised V. dahliae tolerance. GhHDA5 repressed the expression of several lignin biosynthesis-related genes, such as 4-coumarate: CoA ligase gene Gh4CL3 and ferulate 5-hydroxylase gene GhF5H, through reducing the acetylation level of Histone H3 Lysine 9 and 14 (H3K9K14ac) at their promoter regions, thereby resulting in an increased deposition of lignin, especially S monomers, in the GhHDA5-silenced cotton plants. The silencing of GhF5H impaired cotton VW tolerance. Additionally, the silencing of GhHDA5 also promoted the production of reactive oxygen species (ROS), elevated the expression of several pathogenesis-related genes (PRs), and altered the content and signaling of the phytohormones salicylic acid (SA), jasmonic acid (JA) and strigolactones (SLs) after V. dahliae infection. Taken together, our findings suggest that GhHDA5 negatively regulates cotton VW resistance through modulating disease-induced lignification and the ROS- and phytohormone-mediated defense response.

5.
FEMS Microbiol Rev ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231808

RESUMEN

Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes widespread changes in epigenetic modifications and chromatin architecture in the host cell. Recent evidence suggests that SARS-CoV-2 non-structural protein 1 (nsp1) plays an important role in driving these changes. Previously thought to be primarily involved in host translation shutoff and cellular mRNA degradation, nsp1 has now been shown to be a truly multifunctional protein that affects host gene expression at multiple levels. The functions of nsp1 are surprisingly diverse and include not only the downregulation of cellular mRNA translation and stability, but also the inhibition of mRNA export from the nucleus, the suppression of host immune signaling, and, most recently, the epigenetic regulation of host gene expression. In this review, we first summarize the current knowledge on SARS-CoV-2-induced changes in epigenetic modifications and chromatin structure. We then focus on the role of nsp1 in epigenetic reprogramming, with a particular emphasis on the silencing of immune-related genes. Finally, we discuss potential molecular mechanisms underlying the epigenetic functions of nsp1 based on evidence from SARS-CoV-2 interactome studies.

6.
FASEB J ; 38(17): e70028, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39235355

RESUMEN

Pancreatic cancer is a highly aggressive and lethal carcinoma. Circular RNAs (circRNAs) serve key regulatory functions in pancreatic cancer. Ferroptosis was induced by erastin treatment and analyzed by examining malondialdehyde (MDA), iron, Fe2+ and glutathione (GSH). C11-BODIPY 581/591 was used to stain cells for analyzing lipid peroxidation. RNA immunoprecipitation, pull-down and chromatin immunoprecipitation assays were applied to evaluate intermolecular interaction. Mice received subcutaneous injection of pancreatic cancer cells as a model of subcutaneous tumor for in vivo tests. Circ_0005397 was abundantly expressed in pancreatic cancer, and its upregulation was associated with low survival of patients with pancreatic cancer. Circ_0005397 expression was induced by EIF4A3. PCBP2 was highly expressed in pancreatic cancer, and circ_0005397 and PCBP2 were positively correlated in patients with pancreatic cancer. Circ_0005397 knockdown sensitized pancreatic carcinoma cells to ferroptosis via downregulating PCBP2. Circ_0005397 promoted PCBP2 transcription via facilitating the binding of KAT6A and H3K9ac to PCBP2 promoter. Silencing of circ_0005397 reduced tumor growth by enhancing erastin-induced ferroptosis in vivo. EIF4A3-induced circ_0005397 inhibited erastin-induced ferroptosis in pancreatic cancer by promoting PCBP2 expression through KAT6A and H3K9ac.


Asunto(s)
Ferroptosis , Neoplasias Pancreáticas , ARN Circular , Proteínas de Unión al ARN , Ferroptosis/genética , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , ARN Circular/genética , ARN Circular/metabolismo , Animales , Ratones , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Masculino , Regulación hacia Arriba , Ratones Endogámicos BALB C
7.
Cancers (Basel) ; 16(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39123463

RESUMEN

BACKGROUND: Epigenetic changes link medical, social, and environmental factors with cardiovascular and kidney disease and, more recently, with cancer. The mechanistic link between metabolic health and epigenetic changes is only starting to be investigated. In our in vitro and in vivo studies, we performed a broad analysis of the link between hyperinsulinemia and chromatin acetylation; our top "hit" was chromatin opening at H3K9ac. METHODS: Building on our published preclinical studies, here, we performed a detailed analysis of the link between insulin resistance, chromatin acetylation, and inflammation using an initial test set of 28 women and validation sets of 245, 22, and 53 women. RESULTS: ChIP-seq identified chromatin acetylation and opening at the genes coding for TNFα and IL6 in insulin-resistant women. Pathway analysis identified inflammatory response genes, NFκB/TNFα-signaling, reactome cytokine signaling, innate immunity, and senescence. Consistent with this finding, flow cytometry identified increased senescent circulating peripheral T-cells. DNA methylation analysis identified evidence of accelerated aging in insulin-resistant vs. metabolically healthy women. CONCLUSIONS: This study shows that insulin-resistant women have increased chromatin acetylation/opening, inflammation, and, perhaps, accelerated aging. Given the role that inflammation plays in cancer initiation and progression, these studies provide a potential mechanistic link between insulin resistance and cancer.

8.
EMBO Rep ; 25(9): 3970-3989, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39090319

RESUMEN

The tandem Tudor-like domain-containing protein Spindlin1 (SPIN1) is a transcriptional coactivator with critical functions in embryonic development and emerging roles in cancer. However, the involvement of SPIN1 in DNA damage repair has remained unclear. Our study shows that SPIN1 is recruited to DNA lesions through its N-terminal disordered region that binds to Poly-ADP-ribose (PAR), and facilitates homologous recombination (HR)-mediated DNA damage repair. SPIN1 promotes H3K9me3 accumulation at DNA damage sites and enhances the interaction between H3K9me3 and Tip60, thereby promoting the activation of ATM and HR repair. We also show that SPIN1 increases chemoresistance. These findings reveal a novel role for SPIN1 in the activation of H3K9me3-dependent DNA repair pathways, and suggest that SPIN1 may contribute to cancer chemoresistance by modulating the efficiency of double-strand break (DSB) repair.


Asunto(s)
Proteínas de Ciclo Celular , Resistencia a Antineoplásicos , Histonas , Lisina Acetiltransferasa 5 , Fosfoproteínas , Unión Proteica , Humanos , Resistencia a Antineoplásicos/genética , Histonas/metabolismo , Lisina Acetiltransferasa 5/metabolismo , Lisina Acetiltransferasa 5/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Recombinación , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Poli Adenosina Difosfato Ribosa/metabolismo , Línea Celular Tumoral , Daño del ADN , Reparación del ADN , Proteínas Asociadas a Microtúbulos
9.
Cell ; 187(18): 5029-5047.e21, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39094569

RESUMEN

The inheritance of parental histones across the replication fork is thought to mediate epigenetic memory. Here, we reveal that fission yeast Mrc1 (CLASPIN in humans) binds H3-H4 tetramers and operates as a central coordinator of symmetric parental histone inheritance. Mrc1 mutants in a key connector domain disrupted segregation of parental histones to the lagging strand comparable to Mcm2 histone-binding mutants. Both mutants showed clonal and asymmetric loss of H3K9me-mediated gene silencing. AlphaFold predicted co-chaperoning of H3-H4 tetramers by Mrc1 and Mcm2, with the Mrc1 connector domain bridging histone and Mcm2 binding. Biochemical and functional analysis validated this model and revealed a duality in Mrc1 function: disabling histone binding in the connector domain disrupted lagging-strand recycling while another histone-binding mutation impaired leading strand recycling. We propose that Mrc1 toggles histones between the lagging and leading strand recycling pathways, in part by intra-replisome co-chaperoning, to ensure epigenetic transmission to both daughter cells.


Asunto(s)
Replicación del ADN , Epigénesis Genética , Histonas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Histonas/metabolismo , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Mutación , Memoria Epigenética
10.
Biochem Genet ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172205

RESUMEN

Epigenetic alterations, changes in gene expression without DNA sequence modifications, are associated with various health disorders, including reproductive health issues. These alterations can be influenced by environmental factors such as pesticides. This study aimed to explore the relationship between exposure to Organochlorine Pesticides (OClPs) and the histone modification mark H3K9ac in the placenta and fetal tissue, in the context of unexplained recurrent miscarriage (URM). In the case-control study, serum samples from 73 women with URM and 30 healthy women were examined for the presence of OClPs, which include 2,4-DDT, 2,4-DDE, 4,4-DDT, 4,4-DDE, α-HCH, ß-HCH, and γ-HCH, using gas chromatography. Western blot analysis was used to assess H3K9ac expression in placental and fetal tissues. In the URM group, significant increases were observed in the values of α-HCH, ß-HCH, 2,4-DDE, and 4,4-DDE, as well as in the concentration of total OClPs (Æ©3HCH, Æ©2DDE, Æ©2DDT, and Æ©7OClP), compared to controls. While H3K9ac levels in fetal tissue showed no significant difference, a notable decrease was found in the placental tissue of the URM. In the placenta tissue of URM, logistic regression analysis also revealed a significant inverse correlation between the toxins α-HCH, 2,4-DDE, 4,4-DDE, 4,4-DDT, total OClPs, and reduced H3K9ac expression. Our findings suggest that OClPs exposure may contribute to URM by reducing H3K9ac expression in the placenta, potentially affecting placental growth and immune tolerance. This underscores the need for further investigation into the involved mechanisms and potential therapeutic interventions, and the importance of OClPs regulation for reproductive health protection.

11.
Cell Mol Life Sci ; 81(1): 360, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158700

RESUMEN

Iron deficiency is a prevalent nutritional deficit associated with organ damage and dysfunction. Recent research increasingly associates iron deficiency with bone metabolism dysfunction, although the precise underlying mechanisms remain unclear. Some studies have proposed that iron-dependent methylation-erasing enzyme activity regulates cell proliferation and differentiation under physiological or pathological conditions. However, it remains uncertain whether iron deficiency inhibits the activation of quiescent mesenchymal stem cells (MSCs) by affecting histone demethylase activity. In our study, we identified KDM4D as a key player in the activation of quiescent MSCs. Under conditions of iron deficiency, the H3K9me3 demethylase activity of KDM4D significantly decreased. This alteration resulted in increased heterochromatin with H3K9me3 near the PIK3R3 promoter, suppressing PIK3R3 expression and subsequently inhibiting the activation of quiescent MSCs via the PI3K-Akt-Foxo1 pathway. Iron-deficient mice displayed significantly impaired bone marrow MSCs activation and decreased bone mass compared to normal mice. Modulating the PI3K-Akt-Foxo1 pathway could reverse iron deficiency-induced bone loss.


Asunto(s)
Proteína Forkhead Box O1 , Hierro , Histona Demetilasas con Dominio de Jumonji , Células Madre Mesenquimatosas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Hierro/metabolismo , Ratones Endogámicos C57BL , Proliferación Celular , Diferenciación Celular , Masculino , Deficiencias de Hierro , Humanos
12.
bioRxiv ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39091811

RESUMEN

Aging is the major risk factor for most human diseases and represents a major socio-economical challenge for modern societies. Despite its importance, the process of aging remains poorly understood. Epigenetic dysregulation has been proposed as a key driver of the aging process. Modifications in transcriptional networks and chromatin structure might be central to age-related functional decline. A prevalent feature described during aging is the overall reduction in heterochromatin, specifically marked by the loss of repressive histone modification, Histone 3 lysine 9 trimethylation (H3K9me3). However, the role of H3K9me3 in aging, especially in mammals, remains unclear. Here we show using a novel mouse strain, (TKOc), carrying a triple knockout of three methyltransferases responsible for H3K9me3 deposition, that the inducible loss of H3K9me3 in adulthood results in premature aging. TKOc mice exhibit reduced lifespan, lower body weight, increased frailty index, multi-organ degeneration, transcriptional changes with significant upregulation of transposable elements, and accelerated epigenetic age. Our data strongly supports the concept that the loss of epigenetic information directly drives the aging process. These findings reveal the importance of epigenetic regulation in aging and suggest that interventions targeting epigenetic modifications could potentially slow down or reverse age-related decline. Understanding the molecular mechanisms underlying the process of aging will be crucial for developing novel therapeutic strategies that can delay the onset of age-associated diseases and preserve human health at old age specially in rapidly aging societies.

13.
Genetics ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166515

RESUMEN

The structural organization of eukaryotic genomes is contingent upon the fractionation of DNA into transcriptionally permissive euchromatin and repressive heterochromatin. However, we have a limited understanding of how these distinct states are first established during animal embryogenesis. Histone 3 lysine 9 trimethylation (H3K9me3) is critical to heterochromatin formation, and bulk establishment of this mark is thought to help drive large-scale remodeling of an initially naive chromatin state during animal embryogenesis. However, a detailed understanding of this process is lacking. Here, we leverage CUT&RUN to define the emerging H3K9me3 landscape of the zebrafish embryo with high sensitivity and temporal resolution. Despite the prevalence of DNA transposons in the zebrafish genome, we found that LTR transposons are preferentially targeted for embryonic H3K9me3 deposition, with different families exhibiting distinct establishment timelines. High signal-to-noise ratios afforded by CUT&RUN revealed new, emerging sites of low-amplitude H3K9me3 that initiated before the major wave of zygotic genome activation (ZGA). Early sites of establishment predominated at specific subsets of transposons and were particularly enriched for transposon sequences with maternal piRNAs and pericentromeric localization. Notably, the number of H3K9me3 enriched sites increased linearly across blastula development, while quantitative comparison revealed a >10-fold genome-wide increase in H3K9me3 signal at established sites over just 30 minutes at the onset of major ZGA. Continued maturation of the H3K9me3 landscape was observed beyond the initial wave of bulk establishment.

14.
Environ Toxicol ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215581

RESUMEN

RING finger protein 135 (RNF135) is identified as a regulator in certain cancer types. However, its role and molecular mechanisms in lung adenocarcinoma (LUAD) are still unclear. Herein, we investigated the level of RNF135 in tumor tissues of LUAD patients using the UALCAN database and confirmed the data by real-time PCR and western blot analysis. The effects of RNF135 on stemness maintenance and migration/invasion capability of LUAD cells were investigated by sphere formation, flow cytometry, wound healing, and transwell assay. Limiting dilution xenograft assay and intracardiac injection of LUAD cells were applied to assess the implications of RNF135 in tumorigenesis and brain metastasis. Our results revealed that RNF135 was upregulated in tumor tissues of LUAD patients and was positively correlated with poor prognosis. Knockdown of RNF135 suppressed cancer stem cells (CSCs)-like properties, and migration/invasion capability of A549 and NCI-H1975 cells. Conversely, overexpression of RNF135 augmented CSCs-like traits and migration/invasion ability of LUAD cells. Limiting dilution xenograft assay demonstrated that RNF135 was required for the self-renewal of CSCs to initiate LUAD development. Overexpression of RNF135 in A549 cells increased their ability to metastasize to the brain in vivo. Mechanistically, the transcriptional activation of RNF135 by LSD1 involved H3K9me2 demethylation at the promoter region of RNF135. Reexpression of RNF135 in LSD1-silenced A549 cells was able to reverse LSD1-mediated stemness maintenance and migration/invasion capability. Overall, our results implied that targeting of LSD1/RNF135 axis might be a feasible method to suppress tumorigenesis and brain metastasis of LUAD patients.

15.
Biomed Pharmacother ; 179: 117369, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216452

RESUMEN

Perimenopausal depression is a subtype of depression and is prevalent among perimenopausal women, which has brought a heavy burden to family and society. The pathogenesis of perimenopausal depression is still unclear, which affects the prevention and treatment of perimenopausal depression to a certain extent. Quercetin is a flavonoid compound, and has estrogenic activity and pharmacological effects such as antioxidant, anti-inflammatory, and neuroprotective effects. This study investigated whether quercetin improved perimenopausal depression-like behaviors and potential mechanism. The results demonstrated that quercetin could alleviate the depression-like behaviors in perimenopausal depression rat model, inhibit astrocyte activation, improve ferroptosis-associated mitochondrial damage (such as mitochondrial pyknosis and mitochondrial cristae reduction) in hypothalamus, increase the expressions of histone 3 lysine 9 acetylation (acetyl-H3K9), ferroptosis-associated protein including glutathione peroxidase 4 (GPX4) and Xc- antiporter (SLC7A11), and reduce the expressions of endoplasmic reticulum stress-related proteins including inositol-requiring enzyme 1 (IRE1α), phosphorylated IRE1α (p-IRE1α), X-box binding protein 1 (XBP1) and glucose-regulated protein 78 (GRP78) in hypothalamus of perimenopausal depression rat model. Furtherly, in vitro study indicated that quercetin could restore histone acetylase (HAT)/histone deacetylase (HDAC) homeostasis through binding to estrogen receptors and increase the expression of acetyl-H3K9, inhibiting ferroptosis through IRE1α/XBP1 pathway in astrocytes of hypothalamus. Our findings demonstrated that acetyl-H3K9 is a crucial target in development of perimenopausal depression, and quercetin exhibited antidepressant effects through modulating acetyl-H3K9 mediated ferroptosis in perimenopausal depression. Quercetin might be the prevention and adjuvant treatment strategy of perimenopausal depression.

16.
Mol Cell ; 84(17): 3175-3191.e8, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39096900

RESUMEN

Heterochromatin enforces transcriptional gene silencing and can be epigenetically inherited, but the underlying mechanisms remain unclear. Here, we show that histone deacetylation, a conserved feature of heterochromatin domains, blocks SWI/SNF subfamily remodelers involved in chromatin unraveling, thereby stabilizing modified nucleosomes that preserve gene silencing. Histone hyperacetylation, resulting from either the loss of histone deacetylase (HDAC) activity or the direct targeting of a histone acetyltransferase to heterochromatin, permits remodeler access, leading to silencing defects. The requirement for HDAC in heterochromatin silencing can be bypassed by impeding SWI/SNF activity. Highlighting the crucial role of remodelers, merely targeting SWI/SNF to heterochromatin, even in cells with functional HDAC, increases nucleosome turnover, causing defective gene silencing and compromised epigenetic inheritance. This study elucidates a fundamental mechanism whereby histone hypoacetylation, maintained by high HDAC levels in heterochromatic regions, ensures stable gene silencing and epigenetic inheritance, providing insights into genome regulatory mechanisms relevant to human diseases.


Asunto(s)
Ensamble y Desensamble de Cromatina , Epigénesis Genética , Silenciador del Gen , Heterocromatina , Histona Desacetilasas , Histonas , Nucleosomas , Heterocromatina/metabolismo , Heterocromatina/genética , Nucleosomas/metabolismo , Nucleosomas/genética , Histonas/metabolismo , Histonas/genética , Acetilación , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Humanos , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Animales
17.
Artículo en Inglés | MEDLINE | ID: mdl-39153567

RESUMEN

OBJECTIVE: This study aims to link aberrant endogenous retroviruses (ERVs) activation and osteoarthritis (OA) progression by comparing the chromatin accessibility and transcriptomic landscapes of diseased or intact joint tissues of OA patients. METHOD: We performed ERVs-centric analysis on published ATAC-seq and RNA-seq data from OA patients' cartilage tissues. Here, we compared the outer region of the lateral tibial plateau, representing intact cartilage, to the inner region of the medial tibial plateau, representing damaged cartilage. In addition, cartilage tissue sections from OA patients and post-traumatic OA mouse models were assayed for global H3K9me3 abundance through immunohistochemistry staining. RESULTS: Chromatin accessibility and transcription of ERVs, particularly from evolutionarily "intermediate age" ERVs families (ERV1 and ERVL), were enriched and elevated in OA cartilage. This integrative analysis suggests that H3K9me3-related heterochromatin loss might be mechanistically connected to ERV activation in OA tissue. We further verified that global H3K9me3 levels were reduced in diseased cartilage relative to intact tissue in OA patients and injury-induced OA mice. CONCLUSION: The findings suggest a compelling hypothesis that the loss of H3K9me3, either due to aging or cellular stressors, may lead to ERVs reactivation that contributes to tissue inflammation and OA progression. This study unveils the intricate relationship between epigenetic alterations, ERVs activation, and OA, paving the way for potential therapeutic interventions targeting these pathogenic mechanisms.

18.
Mol Cell ; 84(17): 3223-3236.e4, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39094566

RESUMEN

Chromatin-based epigenetic memory relies on the symmetric distribution of parental histones to newly synthesized daughter DNA strands, aided by histone chaperones within the DNA replication machinery. However, the mechanism of parental histone transfer remains elusive. Here, we reveal that in fission yeast, the replisome protein Mrc1 plays a crucial role in promoting the transfer of parental histone H3-H4 to the lagging strand, ensuring proper heterochromatin inheritance. In addition, Mrc1 facilitates the interaction between Mcm2 and DNA polymerase alpha, two histone-binding proteins critical for parental histone transfer. Furthermore, Mrc1's involvement in parental histone transfer and epigenetic inheritance is independent of its known functions in DNA replication checkpoint activation and replisome speed control. Instead, Mrc1 interacts with Mcm2 outside of its histone-binding region, creating a physical barrier to separate parental histone transfer pathways. These findings unveil Mrc1 as a key player within the replisome, coordinating parental histone segregation to regulate epigenetic inheritance.


Asunto(s)
Replicación del ADN , Epigénesis Genética , Histonas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa I/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Histonas/metabolismo , Histonas/genética , Unión Proteica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
19.
Am J Hum Genet ; 111(8): 1605-1625, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39013458

RESUMEN

The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery. We have recruited 209 individuals with a rare EHMT1 variant and performed comprehensive molecular in silico and in vitro testing alongside DNA methylation (DNAm) signature analysis for the identified variants. We (re)classified the variants as likely pathogenic/pathogenic (molecularly confirming Kleefstra syndrome) in 191 individuals. We provide an updated and broader clinical and molecular spectrum of Kleefstra syndrome, including individuals with normal intelligence and familial occurrence. Analysis of the EHMT1 variants reveals a broad range of molecular effects and their associated phenotypes, including distinct genotype-phenotype associations. Notably, we showed that disruption of the "reader" function of the ankyrin repeat domain by a protein altering variant (PAV) results in a KLEFS1-specific DNAm signature and milder phenotype, while disruption of only "writer" methyltransferase activity of the SET domain does not result in KLEFS1 DNAm signature or typical KLEFS1 phenotype. Similarly, N-terminal truncating variants result in a mild phenotype without the DNAm signature. We demonstrate how comprehensive variant analysis can provide insights into pathogenesis of the disorder and DNAm signature. In summary, this study presents a comprehensive overview of KLEFS1 and EHMT1, revealing its broader spectrum and deepening our understanding of its molecular mechanisms, thereby informing accurate variant interpretation, counseling, and clinical management.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 9 , Anomalías Craneofaciales , Metilación de ADN , Estudios de Asociación Genética , N-Metiltransferasa de Histona-Lisina , Discapacidad Intelectual , Fenotipo , Humanos , N-Metiltransferasa de Histona-Lisina/genética , Anomalías Craneofaciales/genética , Discapacidad Intelectual/genética , Cromosomas Humanos Par 9/genética , Metilación de ADN/genética , Femenino , Masculino , Niño , Preescolar , Antígenos de Histocompatibilidad/genética , Adolescente , Cardiopatías Congénitas/genética , Haploinsuficiencia/genética , Mutación
20.
Genome Biol ; 25(1): 175, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961490

RESUMEN

BACKGROUND: Transposable elements play a critical role in maintaining genome architecture during neurodevelopment. Short Interspersed Nuclear Elements (SINEs), a major subtype of transposable elements, are known to harbor binding sites for the CCCTC-binding factor (CTCF) and pivotal in orchestrating chromatin organization. However, the regulatory mechanisms controlling the activity of SINEs in the developing brain remains elusive. RESULTS: In our study, we conduct a comprehensive genome-wide epigenetic analysis in mouse neural precursor cells using ATAC-seq, ChIP-seq, whole genome bisulfite sequencing, in situ Hi-C, and RNA-seq. Our findings reveal that the SET domain bifurcated histone lysine methyltransferase 1 (SETDB1)-mediated H3K9me3, in conjunction with DNA methylation, restricts chromatin accessibility on a selective subset of SINEs in neural precursor cells. Mechanistically, loss of Setdb1 increases CTCF access to these SINE elements and contributes to chromatin loop reorganization. Moreover, de novo loop formation contributes to differential gene expression, including the dysregulation of genes enriched in mitotic pathways. This leads to the disruptions of cell proliferation in the embryonic brain after genetic ablation of Setdb1 both in vitro and in vivo. CONCLUSIONS: In summary, our study sheds light on the epigenetic regulation of SINEs in mouse neural precursor cells, suggesting their role in maintaining chromatin organization and cell proliferation during neurodevelopment.


Asunto(s)
Cromatina , N-Metiltransferasa de Histona-Lisina , Células-Madre Neurales , Elementos de Nucleótido Esparcido Corto , Animales , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Ratones , Cromatina/metabolismo , Metilación de ADN , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Epigénesis Genética , Histonas/metabolismo , Encéfalo/metabolismo , Encéfalo/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA