Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.308
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124957, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39154401

RESUMEN

Hydrogen sulfide (H2S) has a comprehensive contribution to the normal operation and stability of organisms and is also present in environmental water samples and food deterioration. Thus, it is exceedingly promising and significant to develop a highly sensitive detection technique for tracing H2S. Inspired by this, we designed and synthesized a new fluorescent probe 2-[3-[2-[3-bromo-4-(2,4- dinitrobenzenesulfonate)] ethenyl]-5,5-dimethyl-2-cyclohexen-1-ylidene]propanedinitrile (SP-Br) for hydrosulfide ion detection by introducing bromine atom. Compared with reported H2S probes based on the same fluorescent parent, SP-Br has longer fluorescence emission (λem = 670 nm), shorter response time (3 min), lower detection limit (149 nM), and wider detection range (0-30 nM). SP-Br can emit weak yellow fluorescence, and the emission intensity at 670 nm is considerably enhanced in the presence of hydrosulfide ions. The identification mechanism of hydrosulfide ion by SP-Br was verified by high-resolution mass spectrometry, fluorescence, and UV-vis absorption spectroscopy. In addition, SP-Br has been successfully applied to the monitoring of actual water samples and beer samples and has certain development prospects and value in the fields of environmental pollution and food quality analysis.

2.
J Environ Sci (China) ; 148: 476-488, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095182

RESUMEN

In this study, non-thermal plasma (NTP) was employed to modify the Cu/TiO2 adsorbent to efficiently purify H2S in low-temperature and micro-oxygen environments. The effects of Cu loading amounts and atmospheres of NTP treatment on the adsorption-oxidation performance of the adsorbents were investigated. The NTP modification successfully boosted the H2S removal capacity to varying degrees, and the optimized adsorbent treated by air plasma (Cu/TiO2-Air) attained the best H2S breakthrough capacity of 113.29 mg H2S/gadsorbent, which was almost 5 times higher than that of the adsorbent without NTP modification. Further studies demonstrated that the superior performance of Cu/TiO2-Air was attributed to increased mesoporous volume, more exposure of active sites (CuO) and functional groups (amino groups and hydroxyl groups), enhanced Ti-O-Cu interaction, and the favorable ratio of active oxygen species. Additionally, the X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results indicated the main reason for the deactivation was the consumption of the active components (CuO) and the agglomeration of reaction products (CuS and SO42-) occupying the active sites on the surface and the inner pores of the adsorbents.


Asunto(s)
Cobre , Sulfuro de Hidrógeno , Oxidación-Reducción , Titanio , Titanio/química , Adsorción , Cobre/química , Sulfuro de Hidrógeno/química , Contaminantes Atmosféricos/química , Gases em Plasma/química , Modelos Químicos
3.
J Environ Sci (China) ; 148: 489-501, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095183

RESUMEN

The chemistry of sulfur cycle contributes significantly to the atmospheric nucleation process, which is the first step of new particle formation (NPF). In the present study, cycloaddition reaction mechanism of sulfur trioxide (SO3) to hydrogen sulfide (H2S) which is a typical air pollutant and toxic gas detrimental to the environment were comprehensively investigate through theoretical calculations and Atmospheric Cluster Dynamic Code simulations. Gas-phase stability and nucleation potential of the product thiosulfuric acid (H2S2O3, TSA) were further analyzed to evaluate its atmospheric impact. Without any catalysts, the H2S + SO3 reaction is infeasible with a barrier of 24.2 kcal/mol. Atmospheric nucleation precursors formic acid (FA), sulfuric acid (SA), and water (H2O) could effectively lower the reaction barriers as catalysts, even to a barrierless reaction with the efficiency of cis-SA > trans-FA > trans-SA > H2O. Subsequently, the gas-phase stability of TSA was investigated. A hydrolysis reaction barrier of up to 61.4 kcal/mol alone with an endothermic isomerization reaction barrier of 5.1 kcal/mol under the catalytic effect of SA demonstrates the sufficient stability of TSA. Furthermore, topological and kinetic analysis were conducted to determine the nucleation potential of TSA. Atmospheric clusters formed by TSA and atmospheric nucleation precursors (SA, ammonia NH3, and dimethylamine DMA) were thermodynamically stable. Moreover, the gradually decreasing evaporation coefficients for TSA-base clusters, particularly for TSA-DMA, suggests that TSA may participate in NPF where the concentration of base molecules are relatively higher. The present new reaction mechanism may contributes to a better understanding of atmospheric sulfur cycle and NPF.


Asunto(s)
Contaminantes Atmosféricos , Sulfuro de Hidrógeno , Modelos Químicos , Sulfuro de Hidrógeno/química , Contaminantes Atmosféricos/química , Reacción de Cicloadición , Atmósfera/química , Óxidos de Azufre/química , Cinética , Azufre/química
4.
Artículo en Inglés | MEDLINE | ID: mdl-39246043

RESUMEN

BACKGROUND: Changes in K+ channel expression/function are associated with disruption of vascular reactivity in several pathological conditions, including hypertension, diabetes, and atherosclerosis. Gasotransmitters achieve part of their effects in the organism by regulating ion channels, especially K+ channels. Their involvement in hydrogen sulfide (H2S)-mediated vasorelaxation is still unclear, and data about human vessels are limited. OBJECTIVE: To determine the role of K+ channel subtypes in the vasorelaxant mechanism of H2S donor, sodium-hydrosulfide (NaHS), on isolated human internal mammary artery (HIMA). RESULTS: NaHS (1 × 10-6-3 × 10-3 mol/L) induced a concentration-dependent relaxation of HIMA pre-contracted by phenylephrine and high K+. Among K+ channel blockers, iberiotoxin, glibenclamide, 4-aminopyridine (4-AP), and margatoxin significantly inhibited NaHS-induced relaxation of phenylephrine-contracted HIMA (P < 0.01), whereas in the presence of apamin/1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) combination, the HIMA relaxation was partially reduced (P < 0.05). The effect of NaHS was antagonized by NO pathway inhibitors, L-NAME and KT5823, and by cyclo-oxygenase inhibitor, indomethacin (P < 0.01). Under conditions of blocked NO/prostacyclin synthesis and release, apamin/TRAM-34 and glibenclamide caused further decrease in NaHS-induced vasorelaxation (P < 0.01), while iberiotoxin, 4-AP, and margatoxin were without additional effect (P > 0.05). In the presence of nifedipine, NaHS induced partial relaxation of HIMA (P < 0.01). CONCLUSION: Our results demonstrated that H2S donor, NaHS, induced concentration-dependent relaxation of isolated HIMA. Vasorelaxant mechanisms of H2S included direct or indirect opening of different K+ channel subtypes, KATP, BKCa, SKCa/IKCa, and KV (subtype KV1.3), in addition to NO pathway activation and interference with extracellular Ca2+ influx.

5.
J Alzheimers Dis ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39302367

RESUMEN

Background: Impairment of synaptic plasticity along with the formation of amyloid-ß (Aß) plaques and tau-protein neurofibrillary tangles have been associated with Alzheimer's disease (AD). Earlier studies with rat and mouse hippocampal slices have revealed the association of AD with the absence of synthesis of memory related proteins leading to impairment in cognitive functions. The role of hydrogen sulfide (H2S), a gaseous neurotransmitter, has been gaining attention as a neuroprotective agent. However, its role in AD-like conditions has not been studied so far. Objective: To study the neuroprotective role of H2S in AD conditions using rat hippocampal slices and the organic molecule GYY4137, a slow releasing H2S donor. Methods: Electrophysiological recordings were carried out in rat hippocampal slices to look into the impairment of LTP, a cellular correlate of memory. The Aß 42 peptide was bath-applied to mimic AD-like conditions and checked for both late-LTP and synaptic tagging and capture (STC) mechanisms of the synapses. GYY4137 was applied to look into its neuroprotective role at different stages during the recording of fEPSP. Results: There has been a steady decline in the plasticity properties of the synapses, in the form of late-LTP and STC, after the application of Aß 42 peptide in the hippocampal slices. However, application of GYY4137 rescued these conditions in vitro. Conclusions: GYY4137, with its slow release of H2S, could possibly act as a therapeutic agent in cognitive dysfunctions of the brain, mainly AD.

6.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39273626

RESUMEN

The action of abscisic acid (ABA) is closely related to its level in plant tissues. Uridine diphosphate-glycosyltransferase71c5 (UGT71C5) was characterized as a major UGT enzyme to catalyze the formation of the ABA-glucose ester (ABA-GE), a reversible inactive form of free ABA in Arabidopsis thaliana (thale cress). UGTs function in a mode where the catalytic base deprotonates an acceptor to allow a nucleophilic attack at the anomeric center of the donor, achieving the transfer of a glucose moiety. The proteomic data revealed that UGT71C5 can be persulfidated. Herein, an experimental method was employed to detect the persulfidation site of UGT71C5, and the computational methods were further used to identify the yet unknown molecular basis of ABA glycosylation as well as the regulatory role of persulfidation in this process. Our results suggest that the linker and the U-shaped loop are regulatory structural elements: the linker is associated with the binding of uridine diphosphate glucose (UPG) and the U-shaped loop is involved in binding both UPG and ABA.It was also found that it is through tuning the dynamics of the U-shaped loop that is accompanied by the movement of tyrosine (Y388) that the persulfidation of cysteine (C311) leads to the catalytic residue histidine (H16) being in place, preparing for the deprotonation of ABA, and then reorientates UPG and deprotonated ABA closer to the 'Michaelis' complex, facilitating the transfer of a glucose moiety. Ultimately, the persulfidation of UGT71C5 is in favor of ABA glycosylation. Our results provide insights into the molecular details of UGT71C5 recognizing substrates and insights concerning persulfidation as a possible mechanism for hydrogen sulfide (H2S) to modulate the content of ABA, which helps us understand how modulating ABA level strengthens plant tolerance.


Asunto(s)
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Glicosiltransferasas , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/enzimología , Glicosilación , Glicosiltransferasas/metabolismo , Glicosiltransferasas/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Simulación de Dinámica Molecular , Uridina Difosfato Glucosa/metabolismo , Uridina Difosfato Glucosa/química
7.
Plant Physiol Biochem ; 216: 109114, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39250846

RESUMEN

Cadmium (Cd) is a significant heavy metal contaminant within the environment, carrying a notable level of toxicity that presents a substantial hazard to both plant and human. Carrot (Daucus carota), a significant root vegetable crop globally, have evolved multiple transcriptional regulatory mechanisms to cope with Cd stress, with a crucial involvement of the myeloblastosis (MYB) transcription factor. In this study, the DcMYB62 gene encoding 288 amino acids, localized in the nucleus and demonstrated transcription activation property, was isolated from carrot (cv. 'Kuroda'). There was a positive relationship observed between the levels of DcMYB62 expression and the accumulation patterns of carotenoids in two distinct carrot cultivars. Further investigation revealed that the expression of DcMYB62 improved Cd tolerance of Arabidopsis by increasing seed germination rate, root length, and overall survival rate. The levels of carotenoids in DcMYB62 transgenic Arabidopsis surpassed those in wild type, accompanied by elevated expression levels of 15-cis-phytoene desaturase, zeta-carotene desaturase, and carotenoid isomerase. Meanwhile, the heterologous expression of DcMYB62 promoted the biosynthesis of abscisic acid (ABA) and hydrogen sulfide (H2S), which in turn suppressed the formation of hydrogen peroxide and superoxide anion, while also stimulating stomatal closure. Furthermore, the heterologous expression of DcMYB62 increased the transcription of genes associated with heavy metal resistance in Arabidopsis, notably nicotianamine synthase. Overall, this study contributes to understanding how DcMYB62 promote Cd stress resistance of plants by regulating the biosynthesis pathways of carotenoids, ABA, and H2S, which offers valuable insights into the regulatory mechanism connecting DcMYBs with Cd stress response of carrot.

8.
J Sci Food Agric ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264031

RESUMEN

BACKGROUND: A colorimetric method for the quantification of hydrogen sulfide (H2S) produced in microbial fermentations was developed using lead gelled alginate microparticles packed in glass columns. The formation of a lead sulfide complex, between H2S and lead ion (Pb2+) immobilized on the microparticles, allowed simple and accurate quantification by colorimetry. RESULTS: The microparticle-loaded columns were calibrated and showed significant analytical sensitivity. The calibration curve of the system showed a correlation coefficient (r2) of 0.995 and a detection limit of 1.29 ± 0.02 µg L-1. The application of the columns in laboratory wine fermentations was able to detect variations in H2S production from 10.6 to 23.5 µg L-1 by increasing the sugar content in the medium, and from 10.6 to 3.2 µg L-1 with decreasing nitrogen content in the medium. CONCLUSION: Validation of the proposed method was carried out by determining H2S in a vinic fermentation model, the results of which were compared with those obtained using a reference chemical method. The data obtained showed no statistically significant differences between the two methods, confirming the reliability and accuracy of the developed system. © 2024 Society of Chemical Industry.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39271612

RESUMEN

Keeping recruitment of green and cost-effective solutions for environmental challenges in view, the current work was designed to solve the problems related to metal corrosion in the aqueous phases of crude oil in chemical industries. Green materials can play an important role in protecting metals from this corrosion. Hence, the green anti-corrosion material based upon gossypol derivate is suggested to solve the above problems. The electrochemical characteristics were appraised by cyclic voltammetry, electrochemical impedance spectroscopy, potentiodynamic polarization, and electrochemical noise methods. The thermodynamics were studied by gravimetric analyses. The surface morphology was scrutinized using scanning electron microscopy and energy-dispersive X-ray spectroscopy. Density functional theory and molecular dynamic simulations were exploited in theoretical analyses. The gossypol derivate is green, non-toxic, more efficient, non-volatile, and chemically stable anti-corrosion material for gas and oil industries. Carbon steel corrosion simulated in aqueous phases of crude oil (NaCl solutions (1.0 M) saturated with H2S and CO2) was maximally prohibited by forming a protective layer of binaphthalene. Its protection degree is 96.71% (at 100.0 mg/L/0.107 mM). The gossypol ring is a suitable core for preparing the next modification materials to protect against corrosion. The rigid adsorption progressed mainly via hydroxyl functional moieties. Compared to the inhibition behavior of the neutral form of gossypol, the optimized protonated form causes a greater inhibition.

10.
J Hazard Mater ; 478: 135487, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39141947

RESUMEN

Direct sustainable conversion of hydrogen sulfide (H2S) enables collaborative recovery of H and S resources via a metal-enhanced microwave plasma strategy, avoiding the hydrogen waste in the traditional Claus process. However, the metal size effect on microwave plasma property, the optimal process parameters, and the enhancement mechanism remain unclear in H2S conversion. Herein, the optimal tungsten needle (diameter: 1 mm, length: 60 mm, and tip angle: 10°) is experimentally proven for intensifying microwave discharge in multi-mode cavities. Theoretical calculations and plasma distribution reveal that the optimized tungsten needle achieves the ideal coupling with the microwave field, exhibiting extreme electric field augmentation around the needle tip. Tungsten-needle intensifies microwave-sustained plasma, realizing 40.2 % (90.1 %) conversion of 100 % (10 %) concentration H2S to H2 at a low microwave power of 300 W with a good stability of 30 hrs. Low power, large flow rate, and high H2S concentration are beneficial for improving energy efficiency. The excitation of microwave plasma is accompanied by a massive generation of highly energetic electrons. The direct high-energy electron-H2S collision contributes a lot to H2S splitting, especially for high-concentration H2S. In-situ optical emission spectroscopy confirms the vital S and H radicals in the plasma. The free radical reactions triggered by electron collisions are responsible for the production of H2 and S. This work opens an avenue to sustainable and low-carbon hydrogen production from the direct conversion and utilization of H2S.

11.
J Hazard Mater ; 478: 135412, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126855

RESUMEN

A prototype air purifier (AP) module has been constructed using bismuth-doped titanium dioxide (Bix-P25: x(%) as Bi/Ti molar ratios of 1.1, 2.1, 3.3, 5.3, and 8.7). The reactive adsorption property of Bix-P25 materials is evaluated against H2S gas at a recirculation rate of 160 L min-1 in a 17 L closed chamber. The AP (Bi5.3-P25) exhibits superior performance against 10 ppm H2S in dry air under dark conditions (i.e., without light irradiation), with a removal efficiency (XH2S)= 99% in 5 mins, reaction kinetic rate (r (at X = 10%))= 7.3 mmol h-1g-1, and partition coefficient= 0.18 mol kg-1 Pa-1. As such, its superiority is evident over the reference AP (P25) filter with XH2S < 10%. The clean air delivery rate (CADR) of AP (Bi5.3-P25) increases noticeably from 9.9 to 17.8 L min-1 with increasing relative humidity (RH) from 0 to 80%, respectively. In contrast, the CADR decreases from 9.9 to 5.8 L min-1 as the H2S increases from 10 to 20 ppm. According to density functional theory (DFT), the presence of H2O vapor enhances the hydroxylation of Bix-P25 surface to promote H2S mineralization through the formation of TiS3 (i.e., thermodynamic reaction of S atom with the catalytic surface). Complete removal of H2S on the Bi5.3-P25 surface is also confirmed consistently through gas chromatography-mass spectrometry (GC-MS), in-situ diffuse reflection infrared spectroscopy (in-situ DRIFTS), and elemental analysis (EA). This work represents the first utilization of Bix-P25 materials fabricated on an AP platform toward the desulfurization of H2S at room temperature (RT). The practical utility of Bix-P25 is overall validated by its eminent role in reactive adsorption and catalytic oxidation (RACO) of H2S from the air.

12.
Biomolecules ; 14(8)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39199426

RESUMEN

Blood-contact devices are prone to inflammation, endothelial dysfunction, coagulation, and the uncontrolled release of metal ions during implantation and service. Therefore, it is essential to make these multifunctional. Herein, a superhydrophobic DE@ZnS-ZnO@SA film (composed of dabigatran ester, zinc sulfite, zinc oxide, and stearic acid, respectively) is produced. The prepared film has non-adhesion and antibacterial properties, superior mechanical stability, durability, corrosion resistance, and is self-cleaning and blood-repellent. The results of the hemolysis, cytotoxicity, and other anticoagulant experiments revealed that the film had good blood compatibility, no cytotoxicity, and excellent anticoagulant properties. The film displays anticoagulant properties even after being immersed in Phosphate-Buffered Saline (PBS) for 7 days. Furthermore, the film can spontaneously release H2S gas for 90 h after soaking in an acidic environment (pH = 6) for 90 h. This property improves the acidic microenvironment of the lesion and promotes the proliferation of endothelial cells by using H2S gas. In addition, the film can inhibit the uncontrollable release of Zn2+ ions, avoiding its toxicity even when immersed in an acid environment for 35 days. This time-sequential functionalized surface has the potential to typify the future of blood-contacting scaffolds for long-lasting use.


Asunto(s)
Compuestos de Zinc , Óxido de Zinc , Óxido de Zinc/química , Compuestos de Zinc/química , Humanos , Propiedades de Superficie , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Sulfuros/química , Hemólisis/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Animales , Células Endoteliales de la Vena Umbilical Humana
13.
Sci Total Environ ; 951: 175701, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39179037

RESUMEN

Wetlands are widely recognized as hot spots for the emission or deposition of biogenic sulfur gases, including hydrogen sulfur (H2S) and sulfur dioxide (SO2), which significantly affect air quality and climate change. With the expansion of urban wetlands, it is critical to know the roles that urban wetlands played in atmospheric H2S and SO2 budget. In this study, the surface-air exchange fluxes of H2S and SO2 were measured by the Dynamic Flux Chamber (DFC) method in a typical urban wetland in eastern China from Sep 2022 to July 2023. It was found that the urban wetland did not have the expected high H2S emission, might be caused by the relatively high pH value and low sulfate concentration in the soil. Although H2S showed emission in the daytime of spring and summer, an overall H2S flux of -0.04 kg S ha-1 yr-1 was observed throughout the year. Meanwhile, the urban wetland presented a net sink of SO2, with a deposition flux of 0.14 kg S ha-1 yr-1. The negative peaks of SO2 flux corresponded to the suddenly elevated SO2 concentration in the ambient air especially in spring and winter. Through linear fitting of SO2 flux and concentration, the concept of SO2 "compensation point" was proposed. The compensation point is the concentration level at which the observed SO2 flux equals zero. The "compensation point" changed with the season and was related to temperature and humidity. The "compensation point" in summer and autumn were larger, being 2.37 ppb and 1.40 ppb, respectively, while they were 1.07 ppb and 0.86 ppb in spring and winter respectively. Our results suggest that the urban wetland expansion may have little risk of increasing air H2S but could act as a significant sink of SO2 with high SO2 concentration in the urban region.

14.
ACS Sens ; 9(8): 3979-3985, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39093667

RESUMEN

Metal oxide gas sensors (MOGS), crucial components in monitoring air quality and detecting hazardous gases, are well known for their poisoning effects when exposed to certain gas molecules, such as hydrogen sulfide. Surprisingly, our research reveals that high-temperature H2S treatment leads to an enhancement effect rather than response decay. This study investigates the time-decaying response enhancement, being attributed to the formation of metal sulfide and metal sulfate on the metal oxide's surface, enhancing the electronic sensitization. Such an enhancement effect is demonstrated for various gases, including CO, CH3CH2OH, CH4, HCHO, and NH3. Additionally, the impacts of H2S treatment on the response and recovery time are also observed. Surface compositional analysis are conducted with X-ray photoelectron spectroscopy. A proposed mechanism for the enhancement effect is elaborated, highlighting the role of electronic sensitization and the sulfide-sulfate component. This research offers valuable insights into the potential applications of metal oxide sensors in sulfide-presented harsh environments in gas sensing, encouraging future exploration of optimized sensor materials, operation temperature, and the development of hydrogen sulfide poisoning-resistant and higher sensitivity MOGS.


Asunto(s)
Gases , Sulfuro de Hidrógeno , Óxidos , Sulfuro de Hidrógeno/análisis , Óxidos/química , Gases/química , Gases/análisis , Calor , Metales/química
15.
Sci Total Environ ; 950: 175332, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39117219

RESUMEN

Hexavalent chromium [Cr(VI)] is a highly hazardous heavy metal with multiple toxic effects. Occupational studies indicate that its accumulation in humans can lead to liver damage. However, the exact mechanism underlying Cr(VI)-induced hepatotoxicity remains unknown. In this study, we explored the role of CTH/H2S/Drp1 pathway in Cr(VI)-induced oxidative stress, mitochondrial dysfunction, apoptosis, and liver injury. Our data showed that Cr(VI) triggered apoptosis, accompanied by H2S reduction, reactive oxygen species (ROS) accumulation, and mitochondrial dysfunction in both AML12 cells and mouse livers. Moreover, Cr(VI) reduced cystathionine γ-lyase (CTH) and dynamin related protein 1 (Drp1) S-sulfhydration levels, and elevated Drp1 phosphorylation levels at Serine 616, which promoted Drp1 mitochondrial translocation and Drp1-voltage-dependent anion channel 1 (VDAC1) interactions, ultimately leading to mitochondria-dependent apoptosis. Elevated hydrogen sulfide (H2S) levels eliminated Drp1 phosphorylation at Serine 616 by increasing Drp1 S-sulfhydration, thereby preventing Cr(VI)-induced Drp1-VDAC1 interaction and hepatotoxicity. These findings indicated that Cr(VI) induced mitochondrial apoptosis and hepatotoxicity by inhibiting CTH/H2S/Drp1 pathway and that targeting either CTH/H2S pathway or Drp1 S-sulfhydration could serve as a potential therapy for Cr(VI)-induced liver injury.


Asunto(s)
Apoptosis , Cromo , Hepatocitos , Sulfuro de Hidrógeno , Transducción de Señal , Animales , Ratones , Apoptosis/efectos de los fármacos , Cromo/toxicidad , Cistationina gamma-Liasa/metabolismo , Dinaminas/metabolismo , Dinaminas/genética , Hepatocitos/efectos de los fármacos , Sulfuro de Hidrógeno/toxicidad , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
16.
Chemosphere ; 364: 143174, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39181465

RESUMEN

Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial releases. This review focuses on the thermochemical treatment of hydrogen sulfide based on the most recent works to date regarding its removal. By analyzing fundamental steps in chemical reaction engineering, some useful factors are emphasized since they are often neglected in scientific studies, catalysts design and process scale-up. From processing side, the fluid flow conditions including velocity, H2S concentration, relative humidity, temperature and pressure strongly influence the kinetic behavior and so the catalytic performance of the H2S removal reactor. From material side, the catalyst properties including nature, porosity, pore types, size, sites distribution and layer structuration largely influence the removal performance via among others the accessibility to catalytic sites, pores connection and mass transfer resistance. Plasma-assisted catalytic removal of H2S combines many novelties in comparison with a classical thermo-catalytic process. From patents review, we can see that main concerns are about electrodes mounting, reactor lifetime and modular design to solve the problems in the industrial practice. We attempt to provide for scientists, engineers and industrialists a guidance on the design of catalysts and processes for H2S removal which could be applied in laboratorial studies and industrial processes as well.

17.
Eur J Med Chem ; 277: 116732, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39106658

RESUMEN

Thioamides, which are fascinating isosteres of amides, have garnered significant attention in drug discovery and medicinal chemistry programs, spanning peptides and small molecule compounds. This review provides an overview of the various applications of thioamides in small molecule therapeutic agents targeting a range of human diseases, including cancer, microbial infections (e.g., tuberculosis, bacteria, and fungi), viral infections, neurodegenerative conditions, analgesia, and others. Particular focus is given to design strategies of biologically active thioamide-containing compounds and their biological targets, such as kinases and histone methyltransferase ASH1L. Additionally, the review discusses the impact of the thioamide moiety on key properties, including potency, target interactions, physicochemical characteristics, and pharmacokinetics profiles. We hope that this work will offer valuable insights to inspire the future development of novel bioactive thioamide-containing compounds, facilitating their effective use in combating a wide array of human diseases.


Asunto(s)
Química Farmacéutica , Tioamidas , Tioamidas/química , Tioamidas/farmacología , Tioamidas/síntesis química , Humanos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Animales , Estructura Molecular , Antineoplásicos/química , Antineoplásicos/farmacología
18.
Nitric Oxide ; 151: 1-9, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39151724

RESUMEN

Cystathionine gamma-lyase (CSE) is a key enzyme in reverse transsulfuration pathway and contributes to the majority of H2S generation in liver tissues via cysteine metabolism. Dysfunction of the CSE/H2S system is linked to both chronic and acute liver damage. This study investigated the regulatory role of CSE deficiency on diethylnitrosamine (DEN)-induced liver damage in mice. A single injection of DEN was administered into 4-week-old male CSE knockout (CSE-KO) mice and wild-type (WT) littermates, and the mice were sacrificed at 28 weeks of age. Compared to age-matched WT mice, CSE-KO mice spontaneously developed steatosis with increased oxidative stress and higher expressions of inflammation and fibrosis-related genes at 28-weeks of age. Following DEN injection, CSE-KO mice experienced more severe liver damage in comparison with the WT group as reflected by elevated levels of lipid accumulation, increased activities of alanine aminotransferase and aspartate aminotransferase, higher oxidative stress and fibrosis development, and increased expressions of inflammation and fibrosis-related genes. No visible tumors were observed in both types of mice with DEN treatment. In addition, the expression levels of the three H2S-generating proteins (CSE, cystathionine beta-synthase, and 3-mercaptopyruvate sulfurtransferase) and the H2S production rate in liver tissues were unaffected by DEN. Taken together, our study demonstrates that CSE provides a significant hepatoprotective effect and deficiency of CSE exaggerates DEN-induced liver damage in mice. Based on these findings, it can be suggested that targeting the CSE/H2S signaling pathway could be a potential therapeutic target for the treatment of liver diseases.


Asunto(s)
Cistationina gamma-Liasa , Dietilnitrosamina , Ratones Noqueados , Animales , Cistationina gamma-Liasa/metabolismo , Cistationina gamma-Liasa/deficiencia , Cistationina gamma-Liasa/genética , Masculino , Ratones , Hígado/metabolismo , Hígado/patología , Estrés Oxidativo , Sulfuro de Hidrógeno/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Ratones Endogámicos C57BL
19.
J Hazard Mater ; 477: 135405, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39106728

RESUMEN

Landfill mining (LFM) has gained widespread recognition due to its benefits in terms of resource utilization of landfill waste and reuse of landfill sites. However, it is important to thoroughly assess the associated environmental risks. This study simulated the pressure release induced from LFM in small-scale batch anaerobic reactors subject to different initial pressures (0.2-0.6 MPa). The potential risk of hydrogen sulfide (H2S) pollution resulting from pressure release caused by LFM was investigated. The results demonstrated that the concentration of H2S significantly increased following the simulated pressure treatments. At the low (25 °C) and high (50 °C) temperatures tested, the peak H2S concentration reached 19366 and 24794 mg·m-3, respectively. Both of these concentrations were observed under highest initial pressure condition (0.6 MPa). However, the duration of H2S release was remarkably longer (>90 days) at the low temperature tested. Microbial diversity analysis results revealed that, at tested low temperature, the sulfate-reducing bacteria (SRB) communities of various pressure-bearing environments became phylogenetically similar following the pressure releases. In contrast, at the high temperature tested, specific SRB genera (Desulfitibacter and Candidatus Desulforudis) showed further enrichment. Moreover, the intensified sulfate reduction activity following pressure release was attributed to the enrichment of specific SRBs, including Desulfovibrio (ASV585 and ASV1417), Desulfofarcimen (ASV343), Candidatus Desulforudis (ASV24), and Desulfohalotomaculum (ASV506 and ASV2530). These results indicate that the pressure release associated with LFM significantly increases the amount of H2S released from landfills, and the SRB communities have different response mechanisms to pressure release at different temperature conditions. This study highlights the importance of considering the potential secondary environmental risks associated with LFM.


Asunto(s)
Sulfuro de Hidrógeno , Minería , Presión , Instalaciones de Eliminación de Residuos , Temperatura , Bacterias/metabolismo
20.
Plant Physiol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39133896

RESUMEN

Hydrogen sulphide (H2S) is required for optimal establishment of soybean (Glycine max)-Sinorhizobium fredii symbiotic interaction, yet its role in regulating the nitrogen fixation-senescence transition remains poorly understood. A S. fredii cystathionine γ-lyase (CSE) mutant deficient in H2S synthesis showed early nodule senescence characterized by reduced nitrogenase activity, structural changes in nodule cells, and accelerated bacteroid death. In parallel, the CSE mutant facilitated the generation of reactive oxygen species (ROS) and elicited antioxidant responses. We observed that H2S-mediated persulfidation of cysteine C31/C80 in ascorbate peroxidase (APX) and C32 in APX2 modulated enzyme activity, thereby participating in hydrogen peroxide (H2O2) detoxification and delaying nodule senescence. Comparative transcriptomic analysis revealed a significant up-regulation of GmMYB128, an MYB transcription factor (TF), in the CSE mutant nodules. Functional analysis through overexpression and RNAi lines of GmMYB128 demonstrated its role as a positive regulator in nodule senescence. MYB128-OE inoculated with the CSE mutant strain exhibited a reduction in nitrogenase activity and a significant increase in DD15 expression, both of which were mitigated by NaHS addition. Changes at the protein level encompassed the activation of plant defenses alongside turnover in carbohydrates and amino acids. Our results suggest that H2S plays an important role in maintaining efficient symbiosis and preventing premature senescence of soybean nodules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA