Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Comput Chem ; 44(17): 1587-1598, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37013410

RESUMEN

We report new results on the translational-rotational (T-R) states of the CO2 molecule inside the sI clathrate-hydrate cages. We adopted the multiconfiguration time-dependent Hartree methodology to solve the nuclear molecular Hamiltonian, and to address issues on the T-R couplings. Motivated by experimental X-ray observations on the CO2 orientation in the D and T sI cages, we aim to evaluate the effect of the CO2 -water interaction on quantum dynamics. Thus, we first compared semiempirical and ab initio-based pair interaction model potentials against first-principles DFT-D calculations for ascertaining the importance of nonadditive many-body effects on such guest-host interactions. Our results reveal that the rotational and translational excited states quantum dynamics is remarkably different, with the pattern and density of states clearly affected by the underlying potential model. By analyzing the corresponding the probability density distributions of the calculated T-R eigenstates on both semiempirical and ab initio pair CO2 -water nanocage potentials, we have extracted information on the altered CO2 guest local structure, and we discussed it in connection with experimental data on the orientation of the CO2 molecule in the D and T sI clathrate cages available from neutron diffraction and 13 C solid-state NMR studies, as well as in comparison with previous molecular dynamics simulations. Our calculations provide a very sensitive test of the potential quality by predicting the low-lying T-R states and corresponding transitions for the encapsulated CO2 molecule. As such spectroscopic observables have not been measured so far, our results could trigger further detailed experimental and theoretical investigations leading to a quantitative description of the present guest-host interactions.

2.
J Biomed Mater Res A ; 111(9): 1379-1389, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37010360

RESUMEN

Inter-particle secondary crosslinks allow microporous annealed particle (MAP) hydrogels to be formed. Methods to introduce secondary crosslinking networks in MAP hydrogels include particle jamming, annealing with covalent bonds, and reversible noncovalent interactions. Here, we investigate the effect of two different approaches to secondary crosslinking of polyethylene glycol (PEG) microgels via reversible guest-host interactions. We generated a dual-particle MAP-PEG hydrogel using two species of PEG microgels, one functionalized with the guest molecule, adamantane, and the other with the host molecule, ß-cyclodextrin (Inter-MAP-PEG). In a different approach, a mono-particle MAP-PEG hydrogel was generated using one species of microgel functionalized with both guest and host molecules (Intra-MAP-PEG). The Intra-MAP-PEG formed a homogenous distribution due to the single type of microgels used. We then compared the mechanical properties of these two types of MAP-PEG hydrogels and found that Intra-MAP-PEG resulted in significantly softer gels with lower yield stress. We investigated the effect of intra-particle guest-host interactions through titrated weight percentage and the concentration of functional groups added to the hydrogel. We found that there was an ideal concentration of guest-host molecules that enables intra- and inter-particle guest-host interactions with sufficient covalent crosslinking. Based on these studies, Intra-MAP-PEG provides a homogeneous guest-host hydrogel that is shear-thinning with reversible secondary crosslinking.


Asunto(s)
Microgeles , Materiales Biocompatibles/química , Polietilenglicoles/química , Hidrogeles/química
3.
Molecules ; 26(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34946662

RESUMEN

A series of rhodamine B (RhB) encapsulated zeolitic imidazolate framework-8 (RhB@ZIF-8) composite nanomaterials with different concentrations of guest loadings have been synthesized and characterized in order to investigate their applicability to solid-state white-light-emitting diodes (WLEDs). The nanoconfinement of the rhodamine B dye (guest) in the sodalite cages of ZIF-8 (host) is supported by fluorescence spectroscopic and photodynamic lifetime data. The quantum yield (QY) of the luminescent RhB@ZIF-8 material approaches unity when the guest loading is controlled at a low level: 1 RhB guest per ~7250 cages. We show that the hybrid (luminescent guest) LG@MOF material, obtained by mechanically mixing a suitably high-QY RhB@ZIF-8 red emitter with a green-emitting fluorescein@ZIF-8 "phosphor" with a comparably high QY, could yield a stable, intensity tunable, near-white light emission under specific test conditions described. Our results demonstrate a novel LG@MOF composite system exhibiting a good combination of photophysical properties and photostability, for potential applications in WLEDs, photoswitches, bioimaging and fluorescent sensors.

4.
Chemphyschem ; 22(4): 359-369, 2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33368985

RESUMEN

The formation of specific clathrate hydrates and their transformation at given thermodynamic conditions depends on the interactions between the guest molecule/s and the host water lattice. Understanding their structural stability is essential to control structure-property relations involved in different technological applications. Thus, the energetic aspects relative to CO2 @sI clathrate hydrate are investigated through the computation of the underlying interactions, dominated by hydrogen bonds and van der Waals forces, from first-principles electronic structure approaches. The stability of the CO2 @sI clathrate is evaluated by combining bottom-up and top-down approaches. Guest-free and CO2 guest-filled aperiodic cages, up to the gradually CO2 occupation of the entire sI periodic unit cells were considered. Saturation, cohesive and binding energies for the systems are determined by employing a variety of density functionals and their performance is assessed. The dispersion corrections on the non-covalent interactions are found to be important in the stabilization of the CO2 @sI energies, with the encapsulation of the CO2 into guest-free/empty cage/lattice being always an energetically favorable process for most of the functionals studied. The PW86PBE functional with XDM or D3(BJ) dispersion corrections predicts a lattice constant in accord to the experimental values available, and simultaneously provides a reliable description for the guest-host interactions in the periodic CO2 @sI crystal, as well as the energetics of its progressive single cage occupancy process. It has been found that the preferential orientation of the single CO2 in the large sI crystal cages has a stabilizing effect on the hydrate, concluding that the CO2 @sI structure is favored either by considering the individual building block cages or the complete sI unit cell crystal. Such benchmark and methodology cross-check studies benefit new data-driven model research by providing high-quality training information, with new insights that indicate the underlying factors governing their structure-driven stability, and triggering further investigations for controlling the stabilization of these promising long-term CO2 storage materials.

5.
Chemistry ; 24(72): 19280-19288, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30318633

RESUMEN

PbSDB and CdSDB (SDB=4,4'-sulfonyldibenzoate) are two structurally related SDB-based metal-organic frameworks (MOFs) that demonstrate promising potential for selective CO2 adsorption capabilities. The structural stabilities and guest-host interactions between CO2 and PbSDB or CdSDB frameworks at high pressures up to 13 GPa in situ were comparatively investigated by Raman spectroscopy, FTIR spectroscopy, and synchrotron X-ray diffraction. Although both empty frameworks exhibited high chemical stabilities upon compression, they show different pressure-induced modifications in crystallinity. This difference can be attributed to their different coordination topologies that result in near isotropic contraction of unit cells for the CdSDB framework but anisotropic for the PbSDB framework. Furthermore, the CO2 -loaded PbSDB and CdSDB frameworks at high pressures show strongly contrasting guest-host interactions in terms of the pressure-regulated CO2 adsorption sites. In both frameworks, pressure can highly efficiently promote the formation of new CO2 adsorption sites and the enhancement of guest-host interactions. In the CO2 -loaded PbSDB framework, in particular, the peculiar pressure-tuned CO2 population was observed preferentially on one of the two adsorption sites in response to external compression. These unique guest-host interaction behaviors can also be unambiguously correlated to their different topological origins. These findings for the PbSDB and CdSDB frameworks provide in-depth understanding of the structure-property relationship, which is of fundamental importance for CO2 storage application in SDB-based MOFs.

6.
Acta Biomater ; 76: 116-125, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29944975

RESUMEN

The development of biomaterials for a range of tissue engineering applications increasingly requires control over the bioavailability of biomolecular cues such as growth factors in order to promote desired cell responses. While efforts have predominantly concentrated on covalently-bound or freely-diffusible incorporation of biomolecules in porous, three-dimensional biomaterials, opportunities exist to exploit transient interactions to concentrate growth factor activity over desired time frames. Here, we report the incorporation of ß-cyclodextrin into a model collagen-GAG scaffold as a means to exploit the passive sequestration and release of growth factors via guest-host interactions to control mesenchymal stem cell differentiation. Collagen-GAG scaffolds that incorporate ß-cyclodextrin show improved sequestration as well as extended retention and release of TGF-ß1. We further show extended retention and release of TGF-ß1 and BMP-2 from ß-cyclodextrin modified scaffolds was sufficient to influence the metabolic activity and proliferation of mesenchymal stem cells as well as differential activation of Smad 2/3 and Smad 1/5/8 pathways associated with differential osteo-chondral differentiation. Further, gene expression analysis showed TGF-ß1 release from ß-cyclodextrin CG scaffolds promoted early chondrogenic-specific differentiation. Ultimately, this work establishes a novel method for the incorporation and display of growth factors within CG scaffolds via supramolecular interactions. Such a design framework offers opportunities to selectively alter the bioavailability of multiple biomolecules within a three-dimensional collagen-GAG scaffold to enhance cell activity for a range of musculoskeletal regenerative medicine applications. STATEMENT OF SIGNIFICANCE: We describe the incorporation of ß-cyclodextrin into a model CG-scaffold under development for musculoskeletal tissue engineering applications. We show ß-cyclodextrin modified scaffolds promote the sequestration of soluble TGF-ß1 and BMP-2 via guest-host interactions, leading to extended retention and release. Further, ß-cyclodextrin modified CG scaffolds promote TGF-ß1 or BMP-2 specific Smad signaling pathway activation associated with divergent osseous versus chondrogenic differentiation pathways in mesenchymal stem cells.


Asunto(s)
Proteína Morfogenética Ósea 2 , Diferenciación Celular/efectos de los fármacos , Colágeno/química , Células Madre Mesenquimatosas/metabolismo , Andamios del Tejido/química , Factor de Crecimiento Transformador beta1 , beta-Ciclodextrinas/química , Antígenos de Diferenciación/biosíntesis , Proteína Morfogenética Ósea 2/química , Proteína Morfogenética Ósea 2/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/farmacología , Células Madre Mesenquimatosas/citología , Factor de Crecimiento Transformador beta1/química , Factor de Crecimiento Transformador beta1/farmacología
7.
Chemistry ; 24(37): 9353-9363, 2018 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-29600599

RESUMEN

Clathrate hydrates of CO2 have been proposed as potential molecular materials in tackling important environmental problems related to greenhouse gases capture and storage. Despite the increasing interest in such hydrates and their technological applications, a molecular-level understanding of their formation and properties is still far from complete. Modeling interactions is a challenging and computationally demanding task, essential to reliably determine molecular properties. First-principles calculations for the CO2 guest in all sI, sII, and sH clathrate cages were performed, and the nature of the guest-host interactions, dominated by both hydrogen-bond and van der Waals forces, was systematically investigated. Different families of density functionals, as well as pairwise CO2 @H2 O model potentials versus wavefunction-based quantum approaches were studied for CO2 clathrate-like systems. Benchmark energies for new distance-dependent datasets, consisting of potential energy curves sampling representative configurations of the systems at the repulsive, near-equilibrium, and asymptotic/long-range regions of the full-dimensional surface, were generated, and a general protocol was proposed to assess the accuracy of such conventional and modern approaches at minimum and non-minimum orientations. Our results show that dispersion interactions are important in the guest-host stabilization energies of such clathrate cages, and the encapsulation of the CO2 into guest-free clathrate cages is always energetically favorable. In addition, the orientation of CO2 inside each cage was explored, and the ability of current promising approaches to accurately describe non-covalent CO2 @H2 O guest-host interactions in sI, sII, and sH clathrates was discussed, providing information for their applicability to future multiscale computer simulations.

8.
Expert Opin Drug Deliv ; 15(1): 77-91, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28771375

RESUMEN

INTRODUCTION: Hydrogels are of special importance, owing to their high-water content and various applications in biomedical and bio-engineering research. Self-healing properties is a common phenomenon in living organisms. Their endowed property of being able to self-repair after physical/chemical/mechanical damage to fully or partially its original properties demonstrates their prospective therapeutic applications. Due to complicated preparation and selection of suitable materials, the application of many host-guest supramolecular polymeric hydrogels are so limited. Thus, the design and construction of self-repairing material are highly desirable for effectively increase in the lifetime of a functional material. However, recent advances in the field of materials science and bioengineering and nanotechnology have led to the design of biologically relevant self-healing hydrogels for therapeutic applications. This review focuses on the recent development of self-healing hydrogels for biomedical application. AREAS COVERED: The strategies of making self-healing hydrogels and their healing mechanisms are discussed. The significance of self-healing hydrogel for biomedical application is also highlighted in areas such as 3D/4D printing, cell/drug delivery, as well as soft actuators. EXPERT OPINION: Materials that have the ability to self-repair damage and regain the desired mechanical properties, have been found to be excellent candidate materials for a range of biomedical uses especially if their unique characteristics are similar to that of soft-tissues. Self-healing hydrogels have been synthesized and shown to exhibit similar characteristics as human tissues, however, significant improvement is required in the fabrication process from inexpensive and nontoxic/non-hazardous materials and techniques, and, in addition, further fine-tuning of the self-healing properties are needed for specific biomedical uses.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hidrogeles/química , Polímeros/química , Agua/química , Animales , Humanos , Estudios Prospectivos
9.
Chemphyschem ; 16(18): 3779-83, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26455589

RESUMEN

Reversible remote-controlled switching of the properties of nanoporous metal-organic frameworks (MOFs) is enabled by incorporating photoswitchable azobenzene. The interaction of the host material with different guest molecules, which is crucial for all applications, is precisely studied using thin MOF films of the type Cu2 (BDC)2 (AzoBipyB). A molecule-specific effect of the photoswitching, based on dipole-dipole interactions, is found.


Asunto(s)
Metales/química , Compuestos Orgánicos/química , Adsorción , Fotoquímica , Tecnicas de Microbalanza del Cristal de Cuarzo , Espectrofotometría Ultravioleta , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA